intel. APPLICATION AP-24
NOTE

February 1977

AP-24

INTRODUCTION

The INTEL® MCS48™ family consists of a series
of seven parts, including three processors, which take
advantage of the latest advances in silicon techno-
logy to provide the system designer with an effec-
tive solution to a wide variety of design problems.
The significant contribution of the MCS-48 family
is that instead of consisting of integrated micro-
computer components it consists of integrated
microcomputer systems. A single integrated circuit
contains the processor, RAM, ROM (or PROM), a
timer, and 1/O.

This application note suggests a variety of applica-
tion techniques which are useful with the MCS48.
Rather than presenting the design of a complete
system it describes the implementation of “‘sub-
systems” which are common to many micropro-

intgl.

cessor based systems. The subsystems described are
analog input and output, the use of tables for
function evaluation, receiving serial code, transmit-
ting serial code, and parity generation. After an
overview of the MCS-48 family these areas are dis-
cussed in a more or less independent manner.

THE MCS48™ FAMILY

The processors in the MCS48 family all share an
identical architecture. The only significant differ-
ence is the type of on board program storage which
is provided. The 8748 (see Figure 1) includes 1024
bytes of erasable, programmable, ROM (EPROM),
the 8048 replaces the EPROM with an equivalent
amount of mask programmed ROM, nd the 8035
provides the CPU function with no on board
program storage. All three of these processors

EXPANSION TO MORE
10 AND MEMORY

PORT 2 PORT 0
BUS BUFFER BUS BUFFER
RESIDENT
PORT 2 LATCH HIGH PORT 0 LATCH
(LOW 4) AND [PORT 2 LATCH PROGRAM > EPR‘?(M SOM AND LOW Voo
EXPANDER (HIGH 4} COUNTER x PC TEMP REG ————# PROGRAM SUPPLY
PORT I.0 4 POWER Vee
SUPPLY | ———m» +5V (LOW POWER
STANDBY)
4 a Vss
DECODE —— OnD
i
TIMER EVENT LOWER PROGRAM
COUNTER %%OGN%“A STATUS
U
@® (8) WORD
@ @ PORT 1
BUS
BUFFER
AND
J @ LATCH
RAM ADDRESS|
REGISTER
CISTE MULTIPLEXER
REGISTER 0
INSTRUCTION TESTO REGISTER 1
ARITHMETIC REGISTER REGISTER
ACCUMULATOR LOGIC AND DECODER TEST 1 EGISTER 2
LATCH UNIT REGISTER 3
INT REGISTER 4
FLAGO . | ReeisTER 5
S [TRecisTer 6
FLAGT S [Thesten 7
CONDITIONAL z
8RANCH TIMER FLAG 8 LEVEL STACK
LoGIC (VARIABLE LENGTH)
CaRRY OPTIONAL SECOND
REGISTER BANK
Acc
R
T w
CONTROL AND TIMING <’ch BIT TEST DATA STORE
INT__RESET _ PROG S xTAL xTAL2 PSEN ss RO WH
o ’ ’ RESIDENT
OSCILLATOR RAM ARRAY
. 64x8
INITIALIZE XTAL x

INTERRUPT PROM cPY
EXPANDER MEMORY

STROBE SEPARATE

ADDRESS PROGRAM SINGLE READ WRITE
LATCH
STROBE

MEMORY
ENABLE

STEP STROBES

MCS-48™M |nternal Structure

INSTRUCTION SET

AP-24

Mnemonic Description Bytes Cycle Mnemonic Description Bytes Cycles
. @
ADD AR Add register to A 1 1 £ cALL Jump to subroutine 2 2
ADD A, @R Add data memory to A 1 1 3 RET Return 1 2
ADD A, =data Add immediate to A 2 2 £ RETR Return and restore status 1 2
ADDCA,R Add register with carry 1 1 (7]
ADDC A, @R Add data memory with carry 1 1 CLR C Clear Carry 1 1
ADDC A, =data Add immediate with carry 2 2 CPLC Complement Carry 1 1
ANL A, R And register to A 1 1 % CLR FO Clear Flag 0 1 1
ANL A, @R And data memory to A 1 1 T CPLFO Complement Flag 0 1 1
ANL A, =data And immediate to A 2 2 CLR F1 Clear Flag 1 1 1
5 ORLA,R Or register to A 1 1 CPL F1 Complement Flag 1 1 1
% ORLA,@R Or data memory to A 1 1
3 - . .
g ORL A, =data Or |mn.-|ed|a(e tovA 2 2 MOV A, R Move register to A 3 "
2 XRLA,R Exclusive Or register to A 1 1 MOV
3) A, @R Move data memory to A 1 1
& XRLA,@R Exclusive or data memory to A 1 1 _ .
. N " MOV A, =data Move immediate to A 2 2
XRL A, =data Exclusive or immediate to A 2 2 MOV R. A M)
INC A tncrement A 1 1 ’ : ove A to register ! !
e MOV @R, A Move A to data memory 1 1
DEC A Decrement A 1 1 5 h
2 MOV R, =data Move immediate to register 2 2
CLR A Clear A 1 1) .
S MOV @R, =data Move immediate to data memory 2 2
CPL A Complement A 1 1
. . & MOV A, PSW Move PSW to A 1 1
DA A Decimal Adjust A 1 1 3
) Q MOV PSW, A Move A to PSW 1 1
SWAP A Swap nibbles of A 1 1 '
XCH A, R Exchange A and register 1 1
RLA Rotate A left 1 1
RLC A] A left th h 1 1 XCH A, @R Exchange A and data memory 1 1
RR A Rotale A ? I:t rougn carry 1 1 XCHD A, @R Exchange nibble of A and register 1 1
RRC A Ro:a:e A I’!Qh: th h 1 1 MOVX A, @R Move external data memory to A 1 2
otate Arng rough carry MOVX @R, A Move A to external data memory 1 2
INA,P Input port to A 4 2 MOVP A, @A Move to A from current page 1 2
OUTLP, A Output A to port 1 2 MOVP3 A, @A Move to A from Page 3 1 2
ANL P, =data And immediate to port 2 2
5 ORL P, =data Or immediate to port 2 2
.:;- INS A, BUS Input BUS to A 1 2 5 MOVAT Read Timer/Counter 1 1
g QUTL BUS, A Output A to BUS 1 2 € MOVT, A Load Timer/Counter 1 1
S ANL BUS, =data And immediate to BUS 2 2 3 STRTT Start Timer 1 1
_g' ORL BUS, =data Or immediate to BUS 2 2 % STRT CNT Start Counter 1 1
MOVD A, P Input Expander port to A 1 2 g STOP TCNT Stop Timer/Counter 1 1
MOVD P, A Output A to Expander port 1 2 = ENTCNTI Enable Timer/Counter Interrupt 1 1
ANLD P, A And A to Expander port 1 2 DIS TCNTI Disable Timer/Counter Interrupt 1 1
ORLDP, A Or A to Expander port 1 2
?. INC R Increment register 1 1 ENI Enable external interrupt 1 1
'g, INC @R Increment data memory 1 1 DIS | Disable external interrupt 1 1
& DECR Decrement register 1 B SELRBO Select register bank 0 1 1
‘é SEL RB1 Select register bank 1 1 1
JMP addr Jump unconditional 2 2 O SEL MBO Select memory bank O 1 1
JMPP @A Jump indirect 1 2 SEL MB1 Select memory bank 1 1 1
DJNZ R, addr Decrement register and skip 2 2 ENTO CLK Enable Clock output on TO 1 1
JC addr Jump on Carry = 1 2 2
JNC addr Jump on Carry = 0 2 2
J Z addr Jump on A Zero 2 2 NOP No Operation 1 1
JINZ addr Jump on A not Zero 2 2
§ JTO0 addr Jump on TO = 1 2 2
8 JUNTO addr Jumpon TO =0 2 2
@ T addr Jumpon T1 =1 2 2
JNT1 addr Jumpon T1 =0 2 2
JFO addr Jump on FO =1 2 2
JF1 addr Jump on F1 =1 2 2 Mnemonics copyright Intel Corporation 1976
JTF addr Jump on timer flag 2 2
JNI addr Jumpon INT =0 2 2
JBb addr Jump on Accumulator Bit 2 2

Figure 2. 8048/8748/8035 Instruction Set

AP-24

operate from a single 5-volt power supply. The
8748 requires an additional 25-volt supply only
while the on board EPROM is being programmed.
When installed in a system only the 5-volt supply is
needed. Aside from program storage, these chips
include 64 bytes of data storage (RAM), an eight
bit timer which can also be used to count external
events, 27 programmable 1/O pins and the processor
itself. The processor offers a wide range of instruc-
tion capability including many designed for bit,
nibble, and byte manipulation. The instruction set
is summarized in Figure 2.

Aside from the processors, the MCS48 family
includes 4 devices: one pure 1/O device and 3 com-
bination memory and I/O devices. The pure I/O
device is the 8243, a device which is connected to a
special 4 bit bus provided by the MCS48 processors
and which provides 16 1/O pins which can be pro-
grammatically controlled.

The combination memory and I/O devices consist
of the 8355, the 8755, and the 8155. The 8355
and the 8755 both provide 2,048 bytes of program
storage and two eight bit data ports. The only
difference between these devices is that the 8355
contains masked program ROM and the 8755 con-
tains EPROM. The 8155 combines 256 bytes of
data storage (RAM), two eight bit data ports, a six
bit control port, and a 14 bit programmable timer.

Figure 3 shows the various system configurations
which can be achieved using the MCS-48 family of
parts. It should also be noted that eight of the pro-
cessors’ I/O lines have been configured as a bidirec-
tional bus which can be used to interface to stan-
dard Intel peripheral parts such as the 8251 USART
(for serial 1/O), the 8255A PPI (provides 24 1/O
lines) and the complete range of memory compo-
nents.

More detailed information concerning the MCS48
family can be obtained from the “MCS-48 Micro-
computer User’s Manual” which provides a com-
plete description of the MCS-48 family and its
members. A general familiarity with this document
will make the application techniques which follow
easier to understand.

ANALOG 1/O

If analog 1/O is required for a MCS48™ system
there are many alternatives available from the
makers of analog 1/0O modules. By searching through
their catalogs it is possible to find almost any combi-
nation of features which is technically feasible. Per-
haps the best example of such modules are the MP-
10 and MP-20 hybrid modules recently introduced
by Burr-Brown Research Corporation. The MP-10
provides two analog outputs and the MP-20 pro-
vides 16 analog inputs. Both of these units were

intgl.

[1 Number of Available Timers
() Number of Available 1/O Lines

1088 T
1K
8035 8048 8035
8048 8355 8355 2-8355
4-8155 4-8155 4-8155 4-8155
[6] (101)[{5] (116)[[(5) (116)[(5] (131)
832
768 —
8035 8048 8035
_ 8048 83565 8355 2-8355
= 3-8155 3-8155 3-8156 3-8155
= (41 (80)|14] (95)|[4] (95)|[4] {(110)
;578
512 —
g 8035 8048 8035
o 8048 8355 8355 2-8355
= 2-8155 2-8155 2-8165 2-8155
g 381 (59)((3] (74)|13] (74)|[3] (89
<D(320
256 }—
8035 8048 8035
8048 8355 8355 2-8355
8155 8155 8155 8155
(20 @8)|(2) (53)|[21 (53)|12] (68}
64
8035 8048 8035
8048 8355 8355 2-8355
1 ealinn @) e8| @3
1K 2K 3K 4K

PROGRAM MEMORY (ROM)

Figure 3. The Expanded MCS-48 TM System

specifically designed to interface with micro-
Processors.

A block diagram of the MP-10 is shown in Figure 4.
It consists of two eight bit digital to analog conver-
ters, two eight bit latches which are loaded from
the data bus, and address decoding logic to deter-
mine when the latches should be loaded. The D/A
converters each generate an analog output in the
range of 10 volts with an output impedance of 1.
Accuracy is +0.4% of full scale and the output is
stable 25usec after the eight bit binary data is
loaded into the appropriate latch. The latches are
loaded by the write pulse (WR) whenever the
proper address is presented to the MP-10. The
lower two addresses (Ag and A|) are used inter-
nally by the device. Addresses A2 & A3 are com-
pared with the address determination inputs B>
and B3. If their signals are found to be equal, and
if addresses A4-A13 are all high, then the device
is selected and one of the latches will be loaded.
Address bit A1 selects between output 1 and out-
put 2. If address bit AQ is set then the initializa-
tion channel of the DIA is selected. In order to
prepare for operation a data pattern of 804 must

o jaged
I <<
o--- 1
Az — — 83
P m— ADDRESS — %2
o LOGIC
wR ——O|
LOAD 1 LOAD 2
0B 70
REG 1 DA | ANALOGOUT
(I -]
atG 2 oA ANALOG OUT

Figure 4. MP-10 Block Diagram

be output to this channel following the reset of the
device.

A block diagram of the MP-20 analog to digital
converter is shown in figure 5. This unit consists
of a 16 input analog multiplexer, an instrumenta-
tion amplifier, an eight bit successive approxima-
tion analog to digital converter, and control logic.
The 16 input multiplexer can be used to input
either 16 single ended or 8 differential inputs.
The output from the multiplexer is fed into the
instrumentation amplifier which is configured so
that it can easily be strapped for single ended 0-5
volt inputs, single ended +5 volt inputs, or differen-
tial 0-5 volt signals. Provisions are made for an
external gain control resistor on the amplifier. The
gain control equation is:
50k2

G=2% Rext

EXTERNAL
GAIN CONTROL

RESISTER
A5 i
A § -
Az 0%
A ow
12— 22
A g2 [08y
Ap— I35 —> D8,
Ag—] 2 [08¢
A] = ANALOG | pgj
a5] T0 —> D83
A] DIGITAL 1
a8 INSTRUMENTATION | convERTER D8,
5] AMPLIFIER 084
A4} = |—» 08,
A a_| Ao = — _
A2 Ay START CONVERSION Ro
A 1 A2
A 0 Aa T
RE
ADDRESS ADDRESS CONTROL
LATCH ROV EXTERNAL
DELAY CONTROL
' I l I T *? l CAPACITOR
AzhaAAg As A RD T

Figure 5. MP-20 Analog Subsystem

AP-24

With no Rext (Rext = @) the gain is two and the
input is 0-5 or 5 volts full scale. Adding an exter-
nal resistor results in higher gain so that low level
(£50mV) signals from thermocouples and strain
gauges can be accommodated. The output from
the amplifier is applied to the actual A/D con-
verter which provides an eight bit output with
guaranteed monotonicity and an accuracy of +04%
of full scale. Note that this accuracy is specified
for the entire module, not just for the converter
itself. The control logic monitors address lines
A15 through A4 to determine when the address of
the unit has been selected. An address that the unit
will respond to is determined by 11 address control
pins, labeled A4 through A714.If one of these pins
is tied to a logic O then the corresponding address
pin must be high in order for the unit to be selected.
If the pin is tied to a logic 1 then the corresponding
address pin must be low. If the address of the
module is selected when MEMR pulse occurs, the
lower four addresses (A3-AQ) are stored in a latch
which addresses the multiplexer. The coincidence
of the proper address and MEMR also initiates a
conversion and gates the output of the converter
on to the eight bit data bus.

The control logic of the MP-20 was designed to
operate directly with an MCS-80™ system. When a
MEMR occurs and a conversion is initiated the MP-
20 generates a READY signal which is used to
extend the cycle of the 8080A for the duration of
the conversion. READY is brought high after the
conversion is complete which allows the 8080A
to initiate a conversion and read the resulting data
in a single, albeit long, memory or 1/O cycle. The
conversion time of the MP-20 depends on the gain
selected for the amplifier. With no external resistor
(R = o0) the gain is two and the conversion time is
35 psec. For R = 510K the gain is:

L 50k
G=2+3q5 = 100

and the conversion time becomes 100usec. These
settling times are specified in the MP-20 data sheet
and range from 35 to 175 microseconds. The
READY timing is controlled by an external capa-
citor. For a gain of 2 no external capacitor is
required but if higher gains are selected a capacitor
is needed to extend the timing.

A schematic showing both the MP-10 D/A and the
MP-20 A/D connected to the 8748 is shown in
Figure 6. This configuration, which consists of
only four major components, gives an excellent
example of what modern technology can do for

AP-24

UNCOMMITTED | O PINS

(s wlwlele]e|sfs
RIRB[E[8[28]8]|2]E
» » » » > P P P P P
P g iR dn dndu g gn.
225 o=a
it}
Arp
An
A1
Ag
Ay
46 £
||}r——' 2 %
45 Ry
0BIN =
52
5V QUTPUT SELECT A_f'
4
ﬁ COMP IN =
65 8p0 s 7
7 75
z A ‘N]“ 74
6MHz 20pF 21 140Ut M 20 g =
20pF 2 20p 79 7
U—H o Ny, b—
_l__l [] i | 2 1205
= — 1A IN HI Ny —
- 2 3 - 4 MUX OUT HI IN A
7 910
XTAL1 XTAL2] MvxoutLo my =
E MUX ENAB2 INg
t 5
2 s oier T -
=18 - IN,
D) 44 6] mewmn 5 17
[N5
60 8
[INg
59 9
D-‘ VN3
58 10
0, Ny
57 [}
1 D3 Ny b—
To
U] N
[
iNT .
38
3
P P27
% Pze
3 2®
2 Pza
23) 2
521722
gl poy el =
20 MCS 48 v s m
Dl DOg
16 15
DIy DOg
. T .
9 Joi, 12 po, |12 i
7
DIy 00, |2 !
34 1o 00, b2 :
S Bl g 71 |
P16 o, 00, |19 |
32 3 " 13 !
31 P'5 ALE 052
25 .
30 PM PROG |—— 051
—"
2]."° 1
28 P12
P = “lzlz s s fs
2], HEE NIt
10 5 > > > > > > »
0, ERC R g gt g g
5 a 18
0g i ouT 1 —
o,
B
Dy
7 o MP 10
El
2 1°2
0,
10 17
by ouT 2 b——
= LY 12 A » > » > > P P P
WA 3 EggE gt
WA sy 5V N - T
- HE glefale]Jelsle «
2 15 |14

9602

6
1
12

MCS-48™™ Based Analog Processor

ANALOG
INPUTS
16)

ANALOG
OUTPUTS
2

intgl.

the system designer. The four components provide:

An eight bit microprocessor

64 bytes of RAM

1024 bytes of UV erasable PROM
A timer/event counter

16 digital I/O pins

2 testable input pins

An interrupt capability

16 eight bit analog inputs

2 eight bit analog outputs

EEmeAan o

The MCS48 communicates with the D/A and A/D
converters in a memory mapped mode (i.e., it treats
the devices as if they were external RAM). By set-
ting an address in either RQ or R| and then execut-
ing a MOVX the software can transfer data between
the accumulator and the analog I/O. When the
MCS-48 executes the MOVX instruction it first
sends the eight bit address out on the bus and
strobes it into the 8212 latch with the ALE (Address
Latch Enable) signal. After the address is latched,
the MCS-48 uses the same bus to transfer data to
or from the accumulator. If data is being sent out
(MOVX 0dRj, A) the WR strobe is used: if the data
is being moved into the accumulator (MOVX A,
dRj) the RD strobe is used. The one shots on the
WR line are used to delay the write strobe of the
MCS-48 to meet the data set up specifications of
the MP-10.

In order to provide reset capability for the analog
devices without dedicating an [/O pin from the
MCS-48, special addresses are used as reset channels.
Executing any MOVX with anaddressof OXXXXXXX
will reset the A/D module;a similar operation with
an address of X1XXXXXX will reset the D/A; a
MOVX with an address of 01XXXXXX will reset
both devices. All data transfers are accomplished
with the upper two bits of the address field equal
to 10. A summary of the addressing of the analog
devices is shown in Table 1. Notice that except for
an initialization channel for the D/A (which must

Table 1. Analog Interface Addresses

- INPUT OR OUTPUT
OXXX XXXX Reset A/D
XTXX XXXX Reset D/A

INPUT
0011 nnnn

Read A/D Channel nn nn

OUTPUT
1011 0001 Initialize D/A
17011 0000 Write Channel 1
1011 0010 Write Channel 2

AP-24

be written to following a reset to initialize its
internal logic) all channels involve some form of
data transfer.

As was mentioned previously, the MP-20 was
designed to use the READY line of the 8080A.
Obviously this presents a problem since the MCS-
48 does not support a READY line (with its
attendant requirement of entering WAIT state).
The necessity of a READY input can be overcome
by performing a read operation to set the channel
address, waiting the required delay (35 usec for a
gain of two) and then performing a second read to
actually obtain the data. The second read will read
in the data from the channel selected by the first
read irrespective of the channel selected for the
second read. Thus it is possible to use the second
read to set up the channel for the third read. Each
read can read in the current channel and select the
next channel for conversion.

The MP-20 is shown in Figure 6 strapped to input
16 single ended %5 volts signals. Programs which
were used to test this configuration are shown in
Figure 7. The first of these programs uses the D/A
converter to generate sawtooth waveforms by
outputting an incrementing value to the D/A
converters. The second program scans the analog
inputs and stores their digital values in a table
located in RAM.

Loc 0By SEQ SOURCE STATEMENT
]
1
2§ L
3 5 TEST PROGRAM FOR ANALOG OUTPUT
4 THIS PROGRAM DUTPUTS A SAM-
5 TOOTH WAVEFORM BY OUTPUTING
€ 5 AN INCREMENTING PATTERN.
7 i e eeelias
8
.
10 5 EQUATES
R —
2
[13:] 13 INITCH EQu 8B3H ; D/A INITIALIZATION CHANNEL
(2] 14 INITDT EQU 88 3 D/A INITIALIZATION DATA
[13:1] 15 DATCH EQu BBEH : D/A DATA CHANNEL
16
17 e
19 5 START
19 - -
2108 26 1001
21 3 INITIALIZE D/A
0100 2380 22 START: MOV A, 2 INITDT
9192 BSB3 23 (Y RO, % [NITCH
8104 98 24 HOVX @RO.A
25 ¢ TEST LOOP-DUTPUT SAWTODTH
8105 BABR 26 LOOP: MOV RB, 5 DATCH
8107 17 27 INC A
8108 98 28 MOVX @RE,A
8189 2405 29 e Lage
30 5 END OF PROGRAM
31 END

Figure 7a. D/A Exercise Program

All mnemonics copyrighted © Intel Corporation 1976.

Lo 0By sea SOURCE STATEMENT

]

1

2 4 ememmmemeeemesceeceenenaen

3 i TEST PROGRAM FOR ANALOG INPUT

45 THIS PROGRAM SCANS THE INPUT CHANNELS

s AND STORES THE READINGS IN A TABLE

6 ; STARTING AT BUFF.

7

8

9 - e

18 ; EQUATES

Mo —mmee

12
2028 13 BUFF QU 264 3 START OF BUFFER
200F 14 MAXCH EQU 15 3 ND OF ANALOG INPUTS
80B8 15 AINCH EQU 8BOH ; BASE ADDRESS OF ANALDG INPUTS
8005 16 Tiek EQU B i EXECUTION TIME OF DUNZ

17

8

19 ;

20 -
0108 21 180H

22 3 SETUP TO SCAN ANALOG INPUTS
8198 B92F 23 START: MOV R1, # BUFF +MAXCH
8162 BBOF 24 MoV R3, #MAXCH
6104 BBBF 2 MY RO, # (AINCHMAXCH)

26 3 SELECT CHANNEL 1S
8196 89 27 MOVX A,@RE

28 ; WAIT >48 MICROSECONDS
0187 BCOS 29 Y R4, #48/TICK
2199 £CE3 20 DINZ R4S

3 i NOW SCAN ANALDGS
8168 C8 32 L0OP: DEC RO

33 i GET DATA
910C 80 34 mOVX A, @RE

35 5 MOVE INTO BUFFER
916D A1 36 Y @R1,A

37 ; DECREMENT BUFFER POINT
818 €O 38 DEC R1

29 i PAD 20 MICROSEC
818F BCO4 49 oV R4, #2B/TICK
#111 ECt1 41 DUNZ R4.$

a2 3 LOOP UNTIL DONE
8113 €B9B 43 DINZ R3,L00P

44 ; REPEAT TEST FOREVER
8115 2480 P »»e START

a6 ; END OF PROGRAM

47 END

Figure 7b. A/D Exercise Program

TABLE LOOKUP TECHNIQUES

In the previous section the interface between analog
I/O devices and the MCS-48™ was discussed. In
many applications involving analog I/O one quickly
finds that nature is inherently nonlinear, and the
mathematics involved in ‘linearizing it’ can tax the
computational power of the microprocessor, partic-
ularly if it has other tasks to perform. Problems
of this nature are good candidates for the use of
tables.

As an example of how tables can be used as part of
an analog output scheme, consider a system which
requires an MCS-48 to output a variable frequency
sinusoidal waveform. One method of performing
this function would be to use the timer to generate
an interrupt at a fixed rate of 256 times the desired
output frequency. Ateachinterrupt the appropriate
value of the sine function could be calculated from
the MacLaurin series:

Giney XX xcpnkx K
MX=XT3p s 7 0 GKE D!

Where K is chosen to be large enough to provide
the required accuracy.

All mnemonics copyrighted © Intel Corporation 1976.

intgl.

The above calculation, although conceptually
simple, would be time consuming and would
severely limit the possible output frequencies which
could be obtained. As an alternative to calculating
these values in real time, the values could be precal-
culated off line and stored in a table. Upon each
interrupt the MCS-48 would merely have to retrieve
the appropriate value from the table and output
it to the D/A converter. the MCS-48 provides a
special instruction which can be used to access
data in a table. If the table is stored in the last 256
bytes of the first kilobyte of MCS48 memory
then the table lookup can be performed by loading
the independent variable (time in this case) into
the accumulator and executing the instruction.

MOVP3 A, @ A

This instruction uses the initial contents of the
accumulator to index into page 3 of program
storage. The location pointed to is read and the
contents placed in the accumulator. If (as is often
the case) a table of fewer than 256 entries is
required, then the table can be located in any page
of program memory and the instruction:

MOVP A, @ A

can be used to retrieve data from the table. This
instruction operates in the same manner as does
the previous instruction except that the current
page of program storage is assumed to contain
the table.

If it is possible to devote slightly more of the
microprocessor’s time to the table look up process.
then a much smaller table can often be utilized by
taking advantage of interpolation to determine
values of the function between values which are
actual entries in the table. As an example of this

-—
— FLOW METER
-—
— FLOW METER
- [—] conTrROL
AaD | | mesas | | oAl
-—
— FLOWMETER

Figure 8. Flow Monitoring System

intgl.

process consider the hypothetical system shown in
Figure 8. The purpose of this system is to measure
the flow through the three pipes, add them, and
display the total flow on the control panel. The
system consists of three flow meters which generate
a différential voltage which is some function of
flow, an A/D system with at least three differential
inputs, an MCS-48, and a control panel. The
schematic shown in Figure 6 could easily become
part of this system, with the spare digital I/O of
the MCS48 used as an interface to the control
panel. The simplicity of this system is clouded by
the flow transducers, which are assumed to be not
only nonlinear but also to require individual cali-
bration (this is not an unreasonable assumption for
a flow transducer). By usinga table look up process
and an 8748 the flow transducers can be calibrated
and the results of the calibration tests stored
directly in tables in the 8748. (The 8748 has a
PROM in place of the ROM of the 8048 and thus
makes such ‘one off’ programmin~ nractical.)

The results which might be obtained from calibra-
ting one of the flow meters is shown in Figure 9.
The results are plotted as gals/hour versus the
measured voltage generated by the transducer. The
voltage is shown in hexadecimal form so that it
corresponds directly to the digital output of the
analog to digital converter. The flow required to
generate seventeen evenly spaced voltages (OH-100H
in steps of 10H) has been measured and plotted.
This information is shown in tabular form in
Figure 10. It is necessary to generate a program
which will convert any measured input from 00H
to FFH into the flow in units which can be inter-
preted by a human operator. This can easily be
done by simple interpolation.

FLOW (GAL HOUR)

0 L i 1 1 1 1 1 L Il 1 L 1 i 1
00 10, 20, 30, 40, 50, 60, 70, 80, 90, A0, BO, CO, DO, EO, FO, 100,

av

Figure 9. Flow Calibration Curve

TRANSDUCE R
VOLTAGE ,HFX,loo 10 20|30 [40| 50|60 | 70
MEASURED FLOW [o

(GAL HOUR)

@
3

90'AO[BO[C(\[I)DIFO| Folvoﬂ

10 {22 (2630 3a]38[40

1 42]43[45]43[49|5n[m 63

Figure 10. Tabulated Flow Data

AP-24

The eight bits of independent variable (voltage) can
be looked on as two four bit fields. The most signi-
ficant four bits (7-4) will be used to retrieve one of
the table values. The lower four bits (3-0) will be
used to interpolate between this value and the
value retrieved from the next higher location in the
table. If the upper four bits are given the symbol |
and the lower four bits the symbol N, then the
interpolation can be expressed as:
F(x) = F(I) + % [F(1+1) - F(D)]

Where x is the measured voltage and F(x) is the
corresponding flow.

If, as an example, the transducer voltage was
measured as 48H then the flow (ref. Figure 10)
would be:

F=30 + & (34-30)= 32
A subroutine which implements this calculation is

shown in Figure 11. Before it is called the indepen
dent variable (V) is placed in the accumulator and
register R1 is set to point at the first value in the
table. Aside from simple additions and subtractions
the only arithmetic required is to multiply two
values and then divide them by 16. The multiplica-
tion is handled via a subroutine which is also
shown in Figure 11. The division by 16 can be per-
formed by a four place right shift followed by a
rounding operation. The routine shown will handle
a monotonic increasing function of a single inde-
perident variable. Fairly simple modifications are
required for nonmonotonic functions. Functions
of two variables can be handled by interpolating on
a plane rather than along a straight line. Although
this is more time consuming, requiring an inter-
polation for each of the independent variables and
a third to interpolate the final answer, it still
provides a simple means of quickly calculating the
required function. The use of tables can offer a
powerful technique for function evaluation to the
designer.

RECEIVING SERIAL CODE—-BASIC
APPROACHES

Many microprocessor based systems require some
form of serial communication. Serial communica-
tion is extensively used because it allows two or
more pieces of equipment to exchange information
with a minimal number of interconnecting wires.
The minimization of interconnecting wires results
in simpler, cheaper, interconnects because fewer
(or smaller) cables and connectors are required.
Since the required number of drivers and receivers
required is reduced, it can become economically
feasible to provide much higher noise immunity

woc 0By sea SOURCE STATEMENT
g eeene e
1
2 APPROX
3; AT ENTRY R1 POINTSAT TABLE
4; A HAS INDEPENDENT VARIABLE
s
6
7
PR
9 ; EQUATES
105 eees
"
(7] 12 RXB £au RE 5 POINTER §
9001 13 RXY €Qu R1 i PDINTERY
0002 14 AEX EGu R2 i EXTENSION OF A REGISTER
6903 15 COUNT EQU R3 i COUNTER
9004 16 TEWP €QU R4 i TEMP STORAGE
17
1B 5 —mmmmememmean
19 ; APPROXIMATION
20 4 —eomemeees
21
8109 22 ORG 108H
3 POINT RX@ AT TEMP
8189 BG4 24 APPROX: MOV RX8, BTEMP
3 TEMP=N AND 8FH
2 i A=P AND OFH
8102 B8ED 27 mov @Rxe, 48
8104 38 28 XCHD A,@RXe
8165 47 29 AP A
38 3 RX1-BASE+A
8196 69 31 ADD A,RX1
8187 A9 32 oy RX1,A
33 3 RX1=TABLE(P)
3 3 ATABLE(P+1)
6198 €3 35 MOVP3 A, @A
8189 29 3% XCH A,RX1
818a 17 37 INC A
8108 €3 38 MOVP3 A, @A
39 : A=TABLE (P+1)-TABLE(P)
816C 37 0 cPL A
16D 69 a ADD A,RX1
819E 37 42 cPL a
43 i A=N*A/16
016F 341D a4 CALL MULT
2111 BBA2 45 MoV RX@, #AEX
8113 30 a6 XCHD A, @RXD
o114 47 47 SWAP A
0115 24 a8 XCH A,AEX
8116 7219 49 J83 ADUST
8118 24 50 XCH A, AEX
o119 24 S1 ADJUST: XCH A,AEX
#11A 17 s2 INC A
s3 3 ArAsTABLE(P)
0118 69 s4 ADD A,RXY
S5 5 RETURN

Loc 0By sea SOURCE STATEMENT
011C 83 56 RET
57
58
89 5 -----oon
=] MULTIPLY
61§ --meneo-
62 3 SET UP COUNT AND AEX
911D BBIS 63 MULT: MOV COUNT, #8
811F BABE 64 MOV AEX, B0
3 3 CLEAR CARRY
0121 97 66 LOOPA: CLR c
&7 i IF MULTIPLIER (8) <> 1 THEN SHIFT PRODUCT
8122 122B 68 LODPB: BB SSUM
8124 2 69 XCH A,8EX
8125 67 78 RRC A
8126 24 7 XCH A,AEX
0127 67 72 RRC A
73 i LOOP UNTIL DONE
8128 £B22 74 DJN2 COUNT,LOOPB
812A 83 7% RET
7 5 ELSE ADD MULTIPLIER AND SHIFT PRODUCT
8128 24 77 sS: XCH A,8EX
912 68 78 ADD A, @RX®
812D 67 7 RRC a
812 24 88 XCH A,AEX
812F 67 81 RRC a
82 3 LOOP UNTIL DONE
8139 €821 &3 DJNZ COUNT,LOOPA
8132 83 84 RET
85
86
87 § <-eosememeseeoeool
88 ; TABLE TO TEST PROGRAM
89§ wemmmmmmeoameeemenan
28
9388 a1 0RG 380H
92
8308 06 93 TABLE: DB 1] i THIS TABLE 1S FROM FIG 18
9381 8A 94 DB 18
9382 16 £ DB 22
9383 1A % B 26
2384 1E 97 DB 38
8385 22 % B 34
8386 26 9 B 38
387 28 190 B <8
2388 29 181 B a1
8389 2a 182 B 42
8386 2B 103 B 3
#38B 2D 104 o8 45
38C 38 185 0B 48
838D 31 196] 49
038E 35 197 0B s3
838F 38 188 0B s6
8390 3F 199 DB 63
10
1 END

Figure 11. Table Lookup With Interpolation

with more sophisticated (and expensive) line
terminators. The final, and usually most persua-
sive, argument in favor of serial communication
is that it may be the only method available to
accomplish the job. The obvious example of
this is telecommunications where it is necessary
to encode parallel information into serial format
in order to communicate via the telephone net-
work. The intent of this section is to show how
the facilities of the MCS-48™ can be brought to
bear on the problem of serial communication.

I © »
@ g =
_ £ 2_
2g 532
aQ < o @
&z z EE:
£ o
5% 3 5z
_—

—_
L T
0 IDV]D?IDBIDJ‘DsJDeJD7lDB

Figure 12. Serial ASCI| Code

Probably the most common form of serial com-
munication is that used by the obiquitous Teletype-
serial ASCII. This format, shown in Figure 12, con-
sists of a START bit (0 or SPACE) followed by
eight data bits which are in turn followed by two
STOP bits (1 or MARK). In actual practice the

All mnemonics copyrighted © Intel Corporation 1976.

10

eighth data bit usually consists of even parity on
the remaining seven data bits; for the purposes of
this discussion the eighth bit will be considered
only as data. A minor variation of this format
deletes one of the STOP bits. An algorithm which
might be used to sample serial data under software
control using a microprocessor is shown in Figure
13. Th: basic intent of this algorithm is to mini-
mize the effects of distortion and transmission rate
variations on the reliability of the communication
by sampling each data bit as close to its center as
possible. Upon entry to this routine the software
first samples the incoming data in a tight loop until
it is sensed as a MARK (logical one). As soon as a
MARK is detected, a second loop is entered during
which the software waits until the received data
goes to a SPACE (logical zero). The purpose of this
construction is to detect as accurately as possible
the leading edge of the START bit. This instant of
time will be used as a reference point for sampling
all of the following bits in the character. After
sensing the leading edge of the START bit a wait
of one half the expected bit time is implemented.
The period of the incoming signal is called P for
convenience. At the end of this wait the serial line
is tested—if it is MARK then the START bit was

SERIAL IN
A
—————————
RxD NO
MARK
RxD NO
SPACE
WAIT
P2
Rx0 NO
SPACE
B —
WAIT
P
SHIFT
STOP NO RxD INTO
8T BUFFER
YES
RxD YES
MARK
NO

Figure 13. Sample Serial Input Routine

invalid and the process is reinitialized. If the line is
still a SPACE, then the START bit is assumed to
be valid and a delay of one bit time is started. At
the completion of the delay the first data bit is
sampled and a new delay of one bit time is initiated.
This process is repeated until all eight data bits
have been sampled. The last bit sampled is checked
to determine if it is a valid STOP bit (a MARK). If
it is, the character is assumed to be valid; if it is
not, the character has a framing error and is pro-
bably invalid. A listing of a program which imple-
ments the above procedure is shown in Figure 14.

A disadvantage of the approach outlined in Figure
13 is that while the processor is inputting data
serially it must totally dedicate itself to this task.
Accurate timing can only be maintained if the
program remains in a tight wait loop without
allowing itself to be diverted to other functions.
During reception of a character from a Teletype

All mnemonics copyrighted © Intel Corporation 1976.

AP-24

the processor will spend only a 100usecs or so pro-
cessing data and the rest of the 100 millisecs wait-
ing to do the processing at the right time. This lack
of efficiency (approximately 0.1%) in the utilization
of processing power is why devices such as the
8251 USART find broad application in micro-
processor systems.

Loc 0By SEQ SCURCE STATEMENT

-THIS CODE ASSUMES RXD IS

]

1

2 SIMPLE SERIAL INPUT
3

a CONNECTED TO PIN T8

£ ; sesrerersrrssriesans sersvenene

7
[R—
9 5 EQUATES
L IESETT
1"
9082 12 COUNT EQU R2 ; COUNTER
8908 13 BITNO EQU 8 i NO OF BITS TO RECEIVE
2062 14 DLYHI EQU 2 3 HI DLY COUNT
80R4 15 DLYLO EQU 8A4H 5 LO DLY COUNT
16
8180 17 0RG 100+
18 : LDOP UNTIL RXD=MARK
8108 2608 19 SERIN: UNTB s
20 3 NOW LOOP UNTIL RXD=SPACE
8102 3602 21 JTe s
22 3 WAIT 1/2 BIT TIME
8104 341C 23 CALL HBIT
24 i IF FALSE START REINTIALIZE
8106 3608 2 JTe SERIN
2 3 ELSE SET BIT COUNT
8168 BABY 27 mov COUNT, 2 BITHO- 1
28 + WAIT 1 BIT TIME
2194 341C 29 LOOP: CALL HBIT
818C 341C £} CALL BT
31 + DECREMENT COUNT
32 3 -IF ZERD EXIT WITH CARRY SET ON
33 5 -FRAMING ERROR
819E €IS 34 DJUNZ COUNT,LOAD
8110 97 35 CLR c
8111 3614 £ Je EXIT
8113 A7 37 cPL ¢
8114 83 38 EXIT: RET
39 i LOAD DATA
8115 97 48 LOAD: CLR ¢
8116 2619 a1 UNTB LLLA
8118 A7 a2 cPL ¢
8119 67 43 LLLA: RRC a
44 : AND LOOP
2114 240 45 P LooP

s1 3 SET UP LOOP
811C BCO2 S2 HBIT: MOV R4, #DLYH]
53 1 LODP UNTIL TIME DONE
811E BBA4 54 HLOOP: MOV R3, #DLYLO
@120 €828 5§ DUNZ R3,$
8122 ECIE S5 DINZ R4, HLOOP
0124 83 s7 RET
<8 + END OF PROGRAM
59 END

Figure 14. Simple Serial Input

The 8251 USART is simple to interface to the
MSC-48. Figure 15 shows such an interface. The
USART requires a high speed clock (CLK), an ini-
tilization signal (RESET), data clocks (TxC and
RxC), and data in order to operate. A circuit
showing the connection of an 8748 to an 8251
USART is shown in Figure 15. In the circuit shown
the high speed clock (which is used for internal
sequencing by the USART) is provided by con-

11

AP-24

P24
P20

P17
P10

59904 MHz

L

X1 X2
asf,
2] %
2]
P22
— 2
21
—r20
34 38 (RPN 26
3]0 bl o1 vee Ty e
21 P26 ¢ GND [
Qe pos |22 5 aeser =
= 1 = JE—
§' [wa P W osn jo2-
0 = 18 13 A = . 24
2134 024
2|72 eas O 8 "o TR I
[0, a7 eTs
2], o e], = b=
—/1Fn 86 E
2] Dz 17 6 {oge 8251
1
— A o, & 5 Jogs oo be
25 15 2 x0 1488 Jo
PROG Dy Dg3
5v 49| v D, 14 1 D
82
26| ¢ i (B sl 5
5| vor o oo rx 0o 1489
Py 0 39 8o 9
0 h 20 I P
o 7 B oLk RxC
7
EA

7404

+5v +5Y 45V ‘
Y Il
s a3 o 6 {5la]3go
1s[[ocBaPr |7 ocea p |7
—co €p o (33
8 erfio 13 o
72161 2 a1 BT
o o @« CLK !
S 3 5S¢ciR

I

2600
o, |
+—{ oo
“Hac
&
—=108
—2Joa
Tloo
5%

DBEGE IBETE
5V <5V
olgls o
2|88 z
e}

75110
1200
2400
4800

OO0 O OO00O0—-0

“install Jumper for 110 Baud Operation (11}

Figure 15. MCS-48™ to 8251 Interface

necting the CLK signal of the USART to the TQ
pin of the MCS-48. The T(Q pin of the MCS-48
can either be used as a directly testable input pin
or it can become, under program control, an out-
put pin which oscillates at one third of the crystal
frequency. (Note that once this pin is designated
by the software to be an output it will remain so
until the system is reset.) In Figure 15 the crystal
frequency is 5.9904 MHz so the clock provided to
the 8251 is 1.9968 MHz, which conforms to its
specifications.

The initialization signal to the USART (RESET) is
provided programmatically by manipulation of bit
5 of port 2. It was necessary to place the reset of
the 8251 under program control for two reasons.
The first reason is that the MCS-48 does not supply
a reset signal to other devices. The reason for this is
that it was felt to be more useful to provide another
pin of 1/O function instead of a RESET OUT signal

12

intgl.

from the MCS-48. Although this situation could
have been circumvented by the use of an externally
generated reset which drove both the MCS-48 and
the 8251, the second reason for program control of
the reset to the USART still stands. The USART
requires the presence of the CLK signal during
reset in order to properly initialize itself. The
ENTO CLK instruction which the MCS-48 must
execute before the 8251 will receive the CLK can
obviously not be executed until after the system
reset has ended. Reset of the USART can be
accomplished by the following code segment:

ENTO CLK ; TURN ON CLOCK
ORL P2, #001000008 ; START RESET
MOV R2, #DELAY ; DELAY USART
LOOP: DINZ R2, LOOP s RESET TIME
ANL P2, #11011111B ; END RESET

This code first enables the clock, then asserts the
reset signal of a time period determined by the
constant DELAY. The delay invoked is (10 +
S*DELAY) microseconds for DELAY >0. The
USART requires a reset of approximately 6 CLK
periods so DELAY is chosen to be 1 which ensures
adequate reset timing. Note that for delays this
short, NOP instructions could also be used to time
the pulse.

The data clocks required by the USART are pro-
vided by the modem if the USART is operated in
the synchronous mode. In the more common
asynchronous mode, however, these clocks must
be provided by circuitry associated with the 8251.

The 5.9904 MHz crystal was chosen because the
resulting 1.9968 MHz clock to the USART can be
evenly divided to provide transmit and receive
clocks to the USART. Assuming the USART is in
the x16 mode (i.e. it requires data clocks 16 times
the baud rate) the 1.9968 MHz signal can be divided
by 13 to generate the proper clock rate for 9600
baud operation. This 9600 baud clock can be
further divided to give 4800, 2400, 1200, 600, and
300 baud signals. The 1200 baud signal can be
divided by 11 to give a 109.1 baud signal which is
within 1% of the 110 baud required by Teletypes.

The MCS48 communicates with the 8251 in a
memory mapped mode (i.e. as if the 8251 were
external RAM). The instructions available to do
this are MOVX 3Rj, A which stores the contents of
the accumulator at the external RAM location
addressed by Rj (j=0 or 1), and its complement,
the MOVX A, @ Rj instruction which moves data
from the external RAM into the accumulator.
Since the MCS-48 multiplexes addresses and data
on the same eight bit bus an external latch would
be required in order to address the USART with

Loc 0By SEQ SOURCE STATEMENT
e
15 SERIAL TEST
25 THIS CODE INTIALIZES THE USART
3 : AND TRANSMITS AN INCREMENTING
4 PATTERN. HARDUARE SHOWN [F FIG 15,
S -
6
7 oo
8 5 EQUATES
94 eeoen
19
2020 11 MCLR EQU 28 ; USART RESET ADDRESS
0001 120y E BIH ; USART RESET DELAY
207F 13 UCON EQU 7FH 5 USART CONTROL ADDRESS
80CE 14 MODE EQU BCEH 5 USART MODE
9821 15 CMD EQU 21H ; USART CMD
807F 16 STAT EQU IFH 5 USART STATUS
0001 17VAL EQU R + TEST VALUE
89BF 18 MASK EQU 8BFH : CHANGES CMD TO DATA CHANNEL
19
8168 20 0RG 100H
21 3 TURN ON CLOCK
22 3 ANDRESET USART
8180 75 23 TEST: ENTB CLK
8181 BA20 24 0RL P2, #MCLR
8183 BAB1 25 MOV R2,#DLY
8185 EARS 26 LOOP: DUNZ R2,L00P
8187 9ADF 27 ANL P2, # (NDT MCLR)
28 3 SELECT USART CONTROL
8199 237F 29 mMav A, #UCON
910D 34 30 Tl P2,A
31 3 SEND MODE AND COMMAND
816C 23CE 32 MV A, BMODE
818 98 33 MOVX @RB,A ; (CONTENTS OF R® UNIMPORTANT)
916F 2321 34 MV A, 50D
8111 99 s MK @RE,A
3% s DO FOREVER
37 3 SELECT USART STATUS
38 l IF TXRDY=1 THEN
39 D03
4 3 QUTPUT VALUE;
41 : INCREMENT VALUE ;
2 s END;
43 i END;
8112 237F 44 TLP: MOV A, #STAT
8114 34 45 UL P2,A
8115 89 % MOVX A,@RB ; (CONTENTS OF RB UNIMPORTANT)
8116 67 47 RRC A
8117 E612 48 UNC e
8119 F9 49 MV AVAL
8114 9ABF 58 ANL P2, #MASK
911C 98 s1 MOVK @RE,A
811D 19 s2 INC VAL
811E 2412 53 P e
S4 3 END OF PROGRAM
5 END

Figure 16. 8251 Test Program

RO or RI1. In order to minimize the circuitry in
Figure 15 an approach utilizing some of the I/O
pins of the MCS-48 to address the 8251 was chosen
instead. By connecting the chip select (CS) input
of the 8251 to bit 7 of port 2 (P27) and similarly
connecting the C/D address line of the 8251 to bit
6 of port 2 (P26) it is possible to address the 8251
without using RO or R1. The instruction sequence
to access the 8251 is to first reset P27 and set P26
to the appropriate state, use a MOVX instruction to
perform the appropriate operation, and then
finally set P27 to deselect the 8251. As a concrete
example of this addressing, Figure 16 shows the
code necessary to initialize the 8251 and output an
incrementing test pattern on a status driven basis.
If more than one 8251 were to be added to the
MCSH48, or if other types of peripheral circuitry
would be required (e.g. an 8253 timer to generate
the data clocks) it would probably become desirable

All mnemonics copyrighted © Intel Corporation 1976.

AP-24

to add the circuitry necessary to use RO or R1 to
address the peripheral devices. The circuitry which
has to be added to Figure 15 in order to make use
of RO or R1 to address the USART is shown in
Figure 17. Note that only the changes to Figure 15
are shown. The additional component required is
the 8212 eight bit latch. This latch is loaded, when-
ever a valid address is on the bus by the Address
Latch Enable (ALE) signal provided by the MCS-
48. During an external read or write cycle this
address is used to address the 8251 in a linear
select mode. In the circuit shown, the 8251 will be
selected by any address with bit 1 a logical zero
(XXXXXXO0X) and the selection of control or data
transfer (C/D) will be based on bit zero of the
address obtained from RO or R1. Figure 18 shows
the program of Figure 16 modified to utilize the
addressing inherent in the MOVX instructions.

—] P27 WR WR
— Pog RD RD
[
'|}—Z bS;
+5V —AAA— MD
13 8212
ALE P D52
2
~] O 00g f—
DIy 007 |—
18
o} 00g b—
Y
8748 p 00g | 8251
0% 004 -
] O oogf— |
— o1, po, — &5
3 4 _
o1, 0oy |— c/d
Dy D8,
Dg D8g
Dg D8g
[DBy
D3 LLE]
D, b8
Dy 08y
08
O o

Figure 17. Modified MCS-48 to 8251 Interface

RECEIVING SERIAL CODE—-A MORE
SOPHISTICATED ALGORITHM

Although the USART does an admirable job of
performing the serial 1/O function for the MCS-
48™ | there are some situations where it can not be
used. These situations may be caused by economic
factors, such as an extremely cost sensitive design,
or because the code which must be utilized cannot
be accommodated by the USART. An example of
of such a code will be discussed later. Recall that
the principal objection to the approach to serial
input shown in Figure 13 was that it consumes
much of the processor’s power by merely spinning
in loops in order to wait preset time delays.

13

Loc 08J SEa SOURCE STATEMENT
B ¢ e
1 SERIAL TEST
2, THIS CODE INTIALIZES THE USART
3 AND TRANSMITS AN INCREMENT NG
I RE SHOWN 1F FIG 17
© 4 eeeeeseeeeeaa
6
75 -
8: EQUATES
k- HEREEREER
9
8020 11OMCLR EQU 28K USART RESET ADDRESS
2001 12 DY EQU 81H ; USART RESET DELAY
2083 13 UCON EQU 834 ; USART CONTROL ADDRESS
20CE 14 MODE EQU 6CEH ; USART MODE
8021 15 CMD EQU 21H 5 USART CMD
8083 16 STAT EQu 834 USART STATUS
12 17 VAL EQu R1 3 TEST VALUE
LT 19 DATA EQu 4] 3 USART DATA ADDRESS
19
8108 20 0RG 188K
21 3 TURN ON CLOCK
22 3 AND RESET USART
8180 75 23 TEST: ENTB CLK
2101 8A20 24 0RL P2, AMCLR
2103 BAB1 25 oy R2, 8DLY
2105 EABS 26 LOOP DJNZ R2,L00P
8187 9ADF 27 ANL P2, # (NDT MCLR)
28 1 SELECT USART CONTROL
2189 2303 29 MoV A, ZUCON
38 : SEND MODE AND COMMAND
8168 23CE 3 Moy A, =MODE
818D 98 32 MOVX @RE,A ; (CONTENTS OF R® UNIMPORTANT)
818E 2321 33 MoV A, 2CMD
8118 38 34 MoV @R#, A
35 : DO FOREVER
36 SELECT USART STATUS
37 IF TXRDY=1 THEN
38 DO:
39 OUTPUT VALUE;
48 TNCREMENT VALUE ;
4 END;
42 : END:
8111 2303 43 TP MOV A, mSTAT
8113 88 44 Mmovx A.@RD ; (CONTENTS OF R@ UNIMPORTANT)
8114 67 45 RRC A
8115 £611 46 INC ne
8117 F9 47 rov A,vaL
8118 BOR#O 48 MoV, RB, #DATA
8114 99 43 mOvX @RO,A
8118 19 S0 INC vaL
811C 2411 51 e e
52 i END OF PROGRAM
s3 8D

Figure 18. Modified 8251 Test Program

The timer resident on the MCS<48 provides a solu-
tion to this problem. Instead of spinning in a loop
the program can set the timer for a given interval,
start it, and proceed to other tasks. When the timer
overflows, an interrupt will be generated to notify
the software that the present time period has
elapsed. An extension of the algorithm of Figure
13 which uses the timer in this fashion in shown in
Figure 19. This algorithm is identical to the preced-
ing one up until the detection of the leading edge
of the start bit. At this point the timer is set to one
half of the bit time (P) and a return is made to the
calling program which can start additional process-
ing. At the completion of this time interval a
timer overflow interrupt is generated. When the
first interrupt is detected, the serial line is checked
to ensure that it is in a spacing condition (valid
START bit). If it is, the timer is set to P (to sample
the middle of the first data bit) and a return is
made to the program which was running when the
All mnemonics copyrighted © Intet Corporation 1976.

14

intgl.

interrupt occurred. If the serial line has returned to
the MARK state, a status flag is set to indicate an
error and a return is made. On subsequent interrupt
detection, the data is sampled, the timer is reiniti-
ated, and control is returned to the program which
was running when the interrupt occurred. When
the last (i.e. STOP) bit is detected a completion
flag is set and a return is made to the program
running when the timer overflow occurred. By
periodically checking the error and completion
flags the running program can determine when the
interrupt driven receive program has a character
assembled for it.

SERIAL IN
]

TIMER
OVERFLOW

SET TIMER
FOR .P

SHIFT
RxD INTO
BUFFER

SET
N
© COMPLETION

FLAG

SET SET SET
ERROR TIMER ERROR
FLAG 0P FLAG

V

Figure 19. Improved Serial Input Routine

Using the timer to implement time delays as shown
in Figure 19 results in considerable savings in
processing time; two problems remain, however,
which must be solved before an adequate software
solution to the problem of receiving serial code can
be found. The first problem is that even though the
delays between bit samples are implemented via
the timer rather than program loops the loop con-
struction is still used to detect the leading edge of

intgl.

the START bit. Although this results in the waste
of processing power, the second problem is even
more serious. For longer messages the required
accuracy of the clocks becomes more and more
stringent. Using the sampling technique discussed
a cumulative error of one half a bit time in the
time at which a bit sample is taken will result in
erroneous reception. The maximum timing error
which can be tolerated and yet still allow proper
detection of an 11 bit ASCII character is then:
0.5*BIT TIME 0.5P

Emax = GARACTER TIME ~ 119 ~ +°%

where P is the period of single bit. The correspond-
ing calculation for a 32 bit character yields:
0.5P
Emax = 3P 1.6%

Since this calculation does not allow for distortion
on the signals, it is obvious that either extremely
stable clocks will be required or a more tolerant
algorithm must be devised. This problem is parti-
cularly serious at relatively high baud rates where
the resolution of the counter (80usecs witha 6 MHz
crystal) becomes a significant percentage of the
period of the received signal. At the 110 baud rate
of the Teletype the 80usec resolution of the clock
allows a maximum accuracy of 0.33%; at 2400
baud this figure is reduced to 3.8%.

X1 X2 _
— inf —— 5/[3
RxD PROG }——
D T‘ ALE [
P17 b——
P27 P16 f——o
£26 P15 b——
25 Pia b——o
— e P1s > PORT 1
] Pio b——
— P11 b——
— P20 P10 b—o0
— Ty D7 T
Dg ——
+5VE Vee b5 F—
v Dy b——
oD 4
ss D3 r BUS
——{ PSEN Dy +——
o) b——
Vgs Dy b——o
EA
RESET

Figure 20. Detecting RxD Edges

AP-24

Both efficient detection of the start bit and increas-
ed timing accuracy can be obtained if the MCS48
can detect edges on the incoming received data
(RxD). A hardware construct which allows this
is shown in Figure 20.

The received data (RxD) is Exclusive NORed with
bit seven of port two and fed into the TEST (T1)
pin of the MCS-48. By manipulating P27 the pro-
gram can now cause T1 to be either RxD or RxD.
(If P27 = 1 then T1 = RxD; if P27 = 0 then T! =
RxD.) Note that not only can T1 be tested directly
by the software but that it is the input which is
used when the MCS-48 timer is in the event counter
mode. The significance of this will be discussed
later. The relationship between T1, P27, and RxD
is given by the Boolean expression:

T1 = P27 - RxD + P27 « RxD

Figure 21 flowcharts a means of utilizing this hard-
ware construct to avoid the necessity of wasting
time in program loops to detect the leading edge of
the start bit. The receive operation is initialized
when the program desiring to receive serial data
calls the INIT subroutine (Figure 21a). Since INIT
is going to manipulate the timer the first action it
performs is to disable the timer overflow interrupt.
Its next step is to set P27 to a logical 1. Setting
P27 in this manner causes the TEST 1 input to the
MCS48 to follow RxD. By setting up the receive
circuitry in this manner a high to low transition
will occur on TEST 1 when the RxD goes from
the MARKING to SPACING state (i.e. the START

DISABLE TOFLO

TIMER = 1
STRT EVENT CNT

SET BCOUNT

Figure 21a. Interrupt Driven Serial Receive Flowchart

15

AP-24

TIMER
OFLO

SELECT RB1

DISABLE TOFLO

—(e)

Figure 21b. interrupt Driven Serial Receive Flowchart

START

|BCOUNT (6] =0 l

BCOUNT (7] = 0

EXIT

A= ATEMP

V4

Figure 21c. Interrupt Driven Serial Receive Flowchart

16

intgl.

bit occurs). By setting the timer to OFFYH and
enabling it in the event count mode, the INIT
routine sets up the MCS48 to generate a timer
overflow interrupt on the next MARK to SPACE
transition of RxD (the TEST 1 input doubles as
the event counter input). Before returning to the
calling program the INIT routine sets a flag (RDF)
which will be cleared by the receive program when
the requested receive operation is complete. INIT
also sets a value into a register called BCOUNT.
The receive program interprets BCOUNT as follows:

BcOUNT |76 [5]a[3]2]1] 0]

Number of bits remaining
| to receive

[If set indicates that the
START bit has not yet been
| detected

i If set indicates that the
START bit has not yet been
L verified

In order to request the reception of the 11 bit
ASCII code INIT would set BCOUNT to 1100101 1B.
The start bit has been neither verified nor detected
and 11 bits (1011B) are required.

After INIT is called the reception of the individual
serial data bits will proceed on an interrupt driven
basis until a complete character has been assembled.
When this occurs the interrupt driven program will
set the RDF (Receive Done Flag) to a zero to indi-
cate that it has completed the requested operation
and then terminate itself. The procedure which is
used to accomplish this is shown in Figures 21b
and 2lc.

Since all operations of this program are the result
of the occurence of a timer overflow interrupt, it
is necessary to briefly review the interrupt structure
of the MCS48. There are two sources of interrupt;
an external interrupt which is the result of a logical
zero signal applied to the INT pin of the MCS48,
and an internal interrupt which is caused by a
timer overflow condition. The timer overflow
occurs whenever the timer is incremented from
OFF H to zero whether it be in the timer or event
count mode. When one of these events occurs the
hardware in the MCS48 forces the execution of a
CALL. This CALL has a preset address of location
3 if it is due to the external interrupt and location
7 if it is due to a timer overflow. If both of these

intgl.

events occur simultaneously the external interrupt
will take precedence. The CALL automatically
saves the contents of the program counter for the
running program and its PSW (program status
word) on a stack the hardware maintains in RAM
locations 8-23. Although the hardware saves the
program counter and PSW, it remains the responsi-
bility of any interrupt driven software to make
absolutely certain that it does not modify any
memory locations or registers which are being
used by the main program. The most convenient
way of ensuring this in the MCS48 is to dedicate
the second bank of registers (RB1) to the interrupt
driven program. One of these registers has to be
used to save the accumulator (which is not part of
the register bank) but seven registers remain;
including two which can be used as pointers to the
rest of the RAM (RO and R1). Note that if this
approach is taken then these registers have to be
allocated between the program which services the
external interrupt and the one which services the
timer overflow. This problem is somewhat alleviated
by a hardware lockout which prevents the timer
overflow interrupt from interrupting the external
interrupt service routine and vice versa. This is
implemented by locking out new interrupts between
the time an interrupt is recognized and the time a
RETR instruction is executed. The RETR instruc-
tion is like a normal RET (return from subroutine)
except that the PSW as well as the program counter
is restored. The RETR instruction can be very
much thought of as a return from interrupt instruc-
tion in the MCS-48.

The receive program under discussion uses register
bank 1 in the manner described. Whenever a timer
overflow occurs (e.g. on the next MARK to SPACE
transition of RxD after INIT is called), control is
passed (by the hardware generated CALL) to the
point labled TIMER OFLO in Figure 21b. This
program segment immediately selects register bank
1 (RB1) and then saves the accumulator (A) in a
location called ATEMP which is actually R7 of
RBI. The program then tests bit seven of BCOUNT
(R6 of RB1) to find out if a START bit has been
verified (i.e. the edge of the START bit has first
been detected and then verified to still be a SPACE
one-half a bit time later. If BCOUNT [7] is a zero
the START has been verified and the program pro-
ceeds to set the timer to P (the period of the serial
bit), get the current serial data into the carry bit,
and then shift the carry bit into a buffer. After
saving the data the program decrements BCOUNT
and tests it for zero. If BCOUNT is zero the receive
operation is complete so the program sets RDF to
a zero and disables timer overflow interrupts.
Whether or not BCOUNT is zero, control is passed
to EXIT where A is loaded with ATEMP and a

AP-24

RETR is executed. Note that since the state of
the flip flop which selects RB1 is saved as part of
the PSW, the execution of RETR automatically
selects the register bank which was active when
the interrupt occurred.

If BCOUNT [7] is still set when it is tested, con-
trol is passed to START (Figure 21¢) where bit 6
is tested to determine if the START has been
detected yet. If BCOUNT [6] is set it indicates
that this is the first occurrence of a timer overflow
since the receive process was initialized by the
INIT subroutine. If this is so, the program assumes
that the START bit has just started and therefore
it sets the timer to one-half of a bit time (1/2 P),
starts the timer in the timer mode, and clears
BCOUNT [6] to indicate that the START bit has
been detected. The next overflow will again result
in the execution of the program in Figure 21b and
again BCOUNT [7] will be found to be set. This
time, however, BCOUNT [6] will be reset and the
program will know that it should test the START
bit to ensure that it is still a SPACE. This test is
performed and if successful the timer is set for a
bit period P and BCOUNT {7] is reset so that on
the next occurrence of a timer overflow the pro-
gram will know that it should start assembling
serial bits into a character. If the test is unsuccess-
ful, the subroutine INIT is used to reinitialize the
receive program. In either case control is passed to
EXIT where a return from interrupt mode occurs.

This receive program, listings of which appear in
Figure 22, allows the reception of serial characters
transparently to the main running software. After
INIT is called the main program has only to check
RDF periodically to find out if there is data in the
buffer for it. It would be fairly easy fo ‘double
buffer’ this operation by providing a buffer which
the receive program uses to deserialize the incom-
ing code and a second buffer to store the assembled
character. If the program would reinitialize itself
upon completion, the reception of a string of
characters could proceed in much the same way as
it would if a status driven USART were being used.

Although this program solves the first problem of
software controlled reception (lack of efficiency)
the second problem—sensitivity to frequency
variations—remains. An example of a code which
would be susceptible to this problem is the 31,26
BCH code commonly used in supervisory control
systems. (A supervisory control system is, in
essence, a remote control system which allows a
human or computer operator the control of a
system via a serial communications link.) The BCH
codes are used because of their error detection
capabilities and are a class of cyclical redundancy

17

AP-24

Loc 0By SEQ SOURCE STATEMENT

L]

1

2

33 SERIAL INPUT USING THE MCS-48
L THIS CODE ASSUMES HARDWARE
S 3 SHOWN IN FIG 28. TO USE

63 THIS ROUTINE CALL INIT.

75 WHEN RDF=8 THE ASSEMBLED

] CHARACTER WILL BE [N SERBUF
9
"

16 ATEMP EQU R7 STORAGE FOR A DURING INTERUPT
17 BCOUNT EGU R6 CONTAINS NUMBER OF BITS IN MSG
18 COUNT EQU R2 UTILITY COUNTER

13 RX$ EQU [1 POINTER

28 BITNO EQU 8 1 NUMBER OF BITS

21 €au a1 3 SAMPLE PERIOD

22 SERBUF EQU 21 3 SERIAL BUFFER

23 RF EQU 244 ; RECEIVE DONE FLAG

24
25 § memmommeemomeeeemmmeesoeececenonaan-
26 ; CONTROL PASSED HERE WHEN TIMER OFLO OCCURS
e
28
0007 29 0RG L]
30 i /*ENTER INTERRUPT MODE®/
8097 D5 31 IMVEC: SEL RB1
0008 AF 32 Y ATEMP, A
3 5 IF BCOUNTE718 THEN
0089 FE 34 mov A, BCOUNT
88 F223 35 JB7 START
36 + DO;
37 3 TIMER=P;
E] mov A, %P
39 mov T.A
4. : START TIMER
41 SLLB: STRT T
42 5 /*CARRYeRXD®/
43 i CARRY=P27 XNOR TEST1;
4 N a,p2
as RLC A
. JT1 TISRD
47 cPL c
48 : /%SHIFT CARRY INTD BUFFER®/
€9 5 RXB=SERBUF:

S8 3 RSHFT MEM(RX®);
S1 TISRD: MOV RXO, # SERBUF
52 SLODP: XCH A, @RXD
s3 RRC A
54 XCH A, @RX8
S5 s BCOUNT=BCOUNT-1;
i IF BCOUNT=@ THEN
0814 €EIF s7 DINZ BCOUNT , SEXTT
58 i D03

59 B RDF =9

60 B DISABLE EX INT;
5 END;

0#61C BB24 62 mav RX8 , #RDF

#IE 27 63 CLR A

101F A 64 MoV @RXS,A
8028 35 65 DIs TCNTL

0821 043F 67 P SEXIT

70 H 1F BCOUNT(6)=8 THEN

In

0823 FE 71 START: MOV A, BCOUNT
8024 D237 72 JB6 siLe
7 5 Doy
lad i IF TEST1+0 THEN
8026 5635 7 JT1 SLLD
76 H DO;
77 3 TIMER=P;
] s START TIMER:
79 : P27:8:
) f EN 1
81 H BCOUNT(71-8;
82 H END:
2828 2307 83 MoV A 8P
84 MoV T.A
8S STRT T
86 ANL P2, #7FH
87 EN 1
88 v A, BCOUNT
89 ANL A, 8T7FH
2 MoV BCOUNT A
8033 943F 91 g SEXIT
92 3 ELSE
a3 i DO
9 : CALL INIT;
85 P END;
2035 1441 96 SLLD: CALL INIT
97 i ELSE
%8 s DOy
99 f TIMER=P/2;
100 5 START TIMER;
101 : BCOUNT(61+8;
92 1 END;
8837 23€C 193 SLLC: MOV A, 3-(P/2)
09839 62 104 mov T,A
093a S5 1085 STRT T
8038 FE 106 Moy A,BCOUNT
#93C S3BF 187 ANL A, #8BFH
083€ AL 198 mov BCOUNT A
189 ND:
118 © /*EXIT [NYERUPT MODE*/
893F FF 11 SEXIT: MOV A.ATEMP
0040 93 RETR
1ALIZE ROUTINE-
STARTS RECEIVE PROCESS
3 INIT:
PROCEDURE ;
DO;
DISABLE INTERRUPTS;
p27=1;
TIMER=-1;
START EVENT COUNT:
RDF=1;
BCOUNT=COH OR BITNO
END:
END INIT:
8041 35 138 INIT: DIS TCNTI
0042 880 31 ORL P2, #80H
0844 20FF 132 nov aa-1
0846 62 133 MV T.A
8047 45 134 STRT CNT
8948 BS24 135 mov RX , 3 RDF
A B8 1 136 oy @RXD, #BIH
C B81€ 137 MoV RXO, & 1EH i POINT AT BCOUNT
£ BOCS 138 My @RX8, 2 (BCBH OR BITND)
28s? 25 139 EN TCNTI
8951 83 148 RET
141 1END OF PROGRAM
142
143 END

Figure 22. Interrupt Driven Serial Receive Program

codes such as those used in synchronous data com-
munications (e.g. BISYNC or SDLC). BCH codes,
named for their originators Bose, Chaudhuri, and
Hocquenghein, are characterized by having a length
of n=2M-]. The number of redundant check bits
can be mt where t is a positive integer (clearly mt
<n). The 31,26 code fits this format with m=5 and
and t=1. The length of each message is n=25-1=31
with 5*1 redundant bits, leaving 26 bits available
for data transmission. With an appropriate poly-

All mnemonics copyrighted © Intel Corporation 1976.

18

nominal BCH codes can detect all errors consisting
of 2t error bits and all burst errors of mt or fewer
bits. The 31,26 BCH code will therefore detect any
erroneous messages with 1 or 2 errors or bursts of
errors of less than 5 bits. The 31,26 format (shown
in Figure 23) requires the reception of a start bit
followed by 31 information bits, clearly beyond
the capability of the USART but perhaps within
reach of a program controlled approach using the
MCS-48 itself.

intgl.

START BIT

ISPACE) DATA BITS

AP-24

STOP BITS
CHECK BITS {MARK)

'S

=~

_10 B 217] T T T T T T T 7 T T T
DIDI . 11 B L | | 1 1 !

T T T T T T T T T l T T T T T l
D: c2 4 5
1 1 i 1 1 1 1 1 126 c‘l lcjlcic

Figure 23. 31,26 BCH Code

A concept which reduces sensitivity to frequency
deviations and thus allows the reception of longer
codes is shown pictorially in Figure 24. The first
line of this timing chart shows an alternative ones
and zeros pattern on the RxD with a period of 5§
milliseconds. The second line shows that by
sampling at a period of exactly 5 milliseconds the
data can be properly interpreted. The third and
fourth lines show the effects of sampling with a
period of six and four milliseconds respectively. In
either case, an error occurs at the third sample
where both periods result in sampling on an edge
of the RxD signal. The third line of Figure 24
shows a hybrid sampling scheme which, based on
some additional information, switches sampling
periods between the two values. As can be seen in
Figure 24, the data is sampled with a 4 millisecond
period until the sampling begins to fall behind the
data; at this point the sampling period is increased
to six milliseconds and the sampling first catches
up and then passes the center point of the data. As
soon as this happens, the sampling period reverts
to the 4 millisecond period and the cycle repeats.
It can be seen that this scheme sets up a pattern
which repeats indefinitely and the data can be
successfully sampled. Note that the sampling pattern
established is alternating periods of four and six
milliseconds. The average period of this pattern, as
might be expected, is Smsec. Line 5 of Figure 24
shows the effect of a change in transmission speed
to a period of 5.5 msec with no change in the
sampling time. The sampling is again successful but
the new sampling pattern is 4-6-6-6; 4-6-6-6, etc.
Note that the average sample is again equal to the
period of the received data (5.5). While this scheme

smecrericn —— L1 LT LT LT LT 1T

5msec SAMPLE

smeceerop | L1 L f LT LT LT L

6msec SAMPLE I 1 |

smwcpemon —— L LI LT L[L[

4msec SAMPLE L L1

smeceemop | L[LT LT L LI

HYBRID SAMPLE
1416 | 6)4)6 14,6 14) 6 3] 6|

~

w

IS

@

. 5.5msec PERIOD

HYBRI AMPLE
BRIDSAMPLE a4y 6 | 616)66 ,4,6,6,6 4,

Figure 24. Various Sampling Alternatives

does seem to work, the question of what additional
information is needed remains.

The MSC-48 must somehow decide when it is drift-
ing out of synchronization and take corrective
action. By referring back to Figure 24 it can be
seen that if the MCS-48 could determine where the
edges of RxD occurred with respect to its sampling
times then the additional information would be
available. As can be seen in the figure the choice of
sampling period can be based on the following rule:

If an edge on the RxD line occurs during the
first half of the current sampling period, then
use the short period for the next sample. If an
edge occurs during the second half of the period,
then use the long sampling period for the next
sample.

If the data on the RxD line does not change, of
course, the MCS-48 will drift out of synchronization
just as the original algorithum did. As long as edges
occur on TxD, however, synchronization can be
maintained. To maximize the allowable time
between edges, the following addition could be
made to the above rule:

If no edge occurs on the RxD line during a
sample, then change sampling period from short
to long or vice versa.

Note that this addition to the rule will result in
using an average of the two sampling periods when
no edge occurs for several bit times.

The edges of RxD can be easily detected by the use
of the same structure (the Exclusive — NOR gate)
which was added to the MCS48 in Figure 20. This
gate, which is used to detect the edge on RxD
which begins the START bit, can naturally be used
to detect any edge. Since the timer is being used to
time the bit period, however, the event count input
(T1) is not useful during the receive itself. By con-
necting the output of this gate, however, to the
INT input to the MCS48 (see Figure 25) it is
possible to detect edges on RxD with the event
counter when the program is trying to detect the
START bit and by the external interrupt when the
program is using the timer to control the sampling
times.

19

x1 X2 p—

— —— ®D

INT WR
RxD PROG |——
O—— 1 ALE ——
Py b——
P27 Pig |—o
— ';25 P15 p—o
1.2 P1g b——

PORT 1

— P2 sl %
—] Pz P2 f—
— P Pip f——
—1 P22 P10 b——o
— 0, |——
0g ——
45V Vee Dg p—

{ Voo Da BUS
ss D3 p—ro
——— PSEN 0y —
by b—
Vss bo }—
EA
RESET

intgl.

Because of this edge detection it is important to
condition RxD with hardware filters to ensure that
the edges of RxD are clean. Any ringing will cause
repeated CALLs to XISR and probable erroneous
operation. The changes to the START process
(Figure 26c¢) are two-fold; first the TIMER is set to
one half the average of the two sample periods
when the START bit is first detected (BCOUNT
[6] = 1), and second the processing of the edge
information is initialized by presetting SNAP and
clearing P27.

SNAP is preset so that when the reception of data
actually begins (Figure 26b BCOUNT [7] = 0), the
decision block which tests SNAP against LIMIT
will be initialized. This block actually compares the
value in SNAP with a LIMIT value which is used to
determine if the sampling point is ahead or behind
the actual midpoint of the serial data. If the
sampling is ahead then the timer is set for TMIN;
if the sampling is behind then the timer is set for

A modification to the program of Figure 21 which
implements this new sampling algorithm is shown
in Figure 26. The first deviation from the original
program is the addition of a routine (XISR, Figure
26a which is called when an external interrupt
occurs (i.e. when an edge occurs on RxD). This
routine saves the status of the running program and
then stores the current value of the timer register
in a location called SNAP (R5 of RB1). After
doing these operations the program complements
bit 7 of port 2. Manipulating P27 in this manner
will cause the Exclusive NOR gate to turn off the
external interrupt and will set it up to generate
another interrupt when the RxD line changes again
(has another edge).

l 0I5 EXT INT I I SEL RB1 I

I I

[P27 -1 1 I ATEMP = A]
| I

[TIMER = 1 1 l SNAP = TIMER I
1]

ISTARTEVENTCNT—I L P27 = P27 |
| l

=1 C

SET BCOUNT
v RET

Figure 26a. Hybrid Sampling Flowchart

TIMER

FLO EXT
o INT

SELECT RBT

TIMER = TMIN

| TIMER = TMAX I
L

|
I SNAP = LIMIT + 1 l l SNAP = LIMIT - 1]

0
NO

_DISABLE £l

‘4 ExiT ’

Figure 26b. Hybrid Sampling Flowchart

20

>
BCOUNT
(6]

TIMER - TAVE 2

T
START TIMER

BCOUNT (6] - C

CHARGE INT
BCOUNT [7] =0

4 exir ’

A= ATEMP

V4

Figure 26c. Hybrid Sampling Flowchart

TMAX. By presetting SNAP in the manner shown
in the flowcharts the second rule of the algorithm,
(if no edge appears on the RxD line during a
sample, then change the sampling periods short to
long or vice versa) is automatically met. If an edge
occurs then XISR will modify SNAP, if XISR is
not invoked between two samples then the choice
of timer periods will alternate. The only other
significant change to the algorithm is that the INIT
routine must now lock out all interrupts, not just
the timer overflow interrupt, while it is operating.
A program which uses this algorithm to receive a
32 bit message is shown in Figure 27.

Loc 0By

0907
2006
0005
0802
0008
0028
8014
FFDS
FFD3
FFEC
0820
8824

0003

#0883 1466
885 93

2006 D5
0867 AF

9098 FE
2889 F236

09088 FD
808C 8314
090E F217

0018 2309
8012 62

8913 BD13
8815 B41C

8817 23D5

AP-24

SOURCE STATEMENT

SERIAL [NPUT USING MCS-48
THIS CODE ASSUMES HARDWARE
SHOWN [N FIG 25. PROGRAM
1S SIMILAR TD PREVIDUS
ONE. A MORE SOPHISTICATED
SAMPLING ALGORITHM 1S USED

3 NOTE: A PL/M LIKE LANGUAGE WAS USED
TQ COMENT THIS LISTING AND
SEVERAL OTHERS IN THIS NDTE. ND
COMPILER EXISTS FOR THE MCS-48.
THE COMMENTS WERE “HAND
COMPILED’ [NTO ASSEMBLY CODE

EQUATES
ATEMP EQU R? ; STORAGE FOR A DURING INTERUPT
BCOUNT EQU RS + CONTAINS NUMBER OF BITS IN MSG
SNAP EQU RS ; TAKES TIMER SNAP SHOT ON RXD EDGE
COUNT EQU R2 5 UTILITY COUNTER
RXD EQU RO + PDINTER
BITNO EQU 32 ; NUMBER OF BITS
LIMIT EQU 20 5 TEST VALUE FOR MIN/MAX SAMPLING
TMAX EQuU -43 3 MAX SAMPLE PERIOD
™IN EQU -33 + MINIMUM SAMPLE PER1OD
HALF EQU -28 5 HALF NOMINAL PERIOD

SERBUF EQU 28H 3 START OF SERIAL BUFFER
RDF EGU 24H 5 RECEIVE DONE FLAG

ORG 83
3 CALL SERVICE ROUTINE

EIVEC: CALL XISR
RETR

72
73

5 /*ENTER INTERUPT MODE*/
TMVEC: SEL RB1

MOV aTEMR,A
3 IF BCOUNT(7)=8 THEN
MoV A, BCOUNT
JB7 START
IF SNAPCLIMIT THEN
mov A, SNAP
ADD A aLIMIT
JB? sLLa
s Doy
s TIMER=TMEN;
; SNAP=LIMIT 1
i END;
may A, #TMIN
MoV WA
mov SNAP, #LIMIT-1
P SLLB
3 ELS
5 DOs
i TIMER=THAX
: SNAP=LIMIT-1;
3 END;
SLLA: my A, # TMAX

Figure 27. Hybrid Sampling Program

21

AP-24

Loc

0919
#1A

#81c

201D
291E
o1F
0021

0022
8924
8826
0927

928

29
a02A

202

8626
[LED
8631
8832
8033

8834

2036
2037

8038
8030
8036
803F
8041
8043
B044
0045
0947
0848

0BJ

62
BD13

564

2309

BD1S

9A7F

FE
537F

8454

SEQ

SLLB:

TISRD:

SLOOP

START:

SOURCE STATEMENT

mov
MoV

STRT
IN
RLC

INT1
cPL

mov.
MOV
XCH
RRC
XCH
INC
DJINZ

DUNZ

MoV
CLR

DIs
DIS

mov
JBE

JT

T.A
SNAP, #LIMIT-1
3 START TIMER:
T
+ /*CARRY=RXD®/
5 CARRY=P27 XOR TEST1:
A,P2
A
TISRD
c
3 /*SHIFT CARRY INTO BUFFER*/
5 RX@=SERBUF;
1 COUNTs4;
5 DO WHILE COUNT<>B;
3 RSHET MEM(RX0) :
: RXD=RXD<1;
; COUNT=COUNT-1;
3 END;
RX®, # SERBUF
COUNT, #4
A,RX0
A
A, @RXE

RXD
COUNT, SLOOP
5 BCOUNT=BCOUNT-1;
5 IF BCOUNT=8 THEN
BCOUNT , SEXIT
i DO:

RDF =0
{ DISABLE EX INT;

END;
RX®, #RDF
@RX8,A
TCNTI
1
ND;

SEXIT

3 ELSE

A, BCOUNT
sLe
3 DO;
IF TEST1=0 THEN
SLLD
5 Da;
{ TIMER=TMIN;
H START TIMER;
5 SNAP=LIMITs 15
i P7=83
8 EN 1
l BCOUNT(7)=8;
i END:
A, 8TMIN
T8
T
SNAP, #LIMITs1
P2, 87FH
1
A,BCOUNT
A, #7FH
BCOUNT A
SEXIT
5 ELSE
5 DO;
{ CALL INIT;
3 END;

Figure 27. Hybrid Sampling Program

Loc 0By

9048 1456

#84C 23EC
BO4E 62

8958 FE
8851 S3BF
8053 AE

8054 FF
#8ss 93

0666 DS
8667 AF
bess 42
AD
L]

9
06

In

SEQ SOURCE STATEMENT
143 SLLD: CALL INIT
194 i ELSE
145 i DO;
146 : TIMER=CTMINSTMAX) /2;
147 3 START TIME
148 5 BCOUNT (6] =1
i END;
158 SLLC: MOV A, RHALF
151 MV T,A
152 STRT T
183 MOV A, BCOUNT
154 ANL A, #OBFH
158 MOV BCOUNT,A
156 3 END;
157 s /*EXIT INTERUPT MODE*/
158 SEXIT: MOV A,ATEMP
159 RETR
168

61
162 ; INTIALIZE ROUTINE

INIT: DIS
DIS
ORL

INTERUPT SERVICE ROUTINE

XISR: SEL RBY

MoV ATEW,A
v AT

MOV SNAP,A
N P2
XRL A, #80H
Tl P2,A
MOV A,ATEMP
RET

END

f STARTS RECEIVE PROCESS

3 INIT:

PROCEDURE ;

DISABLE INTERUPTS;
P27=1;
TIMER=-1;
START EVENT COUNT;
RDF=13
BCOUNT=8COH OR BITNO
END:
END INIT;

XISR:
PROCEDURE ;

DO;
/*ENTER INTERUPT MODE*/
SNAP=TIMER ;
P27-NOT P27;

END XISR;

5 END OF PROGRAM

All mnemonics copyrighted © Intel Corporation 1976.

22

intgl.

TRANSMITTING SERIAL CODE

Serial transmission is conceptually far simpler than
serial reception since no synchronization is required.
All that is required is to use the timer to generate
interrupts at the bit rate and present the character
to be transmitted serially at an I/O pin. A program
which does this is shown in Figure 28. The trans-
mission of serial data becomes much more compli-
cated if it must occur simultaneously with reception.

If both reception and transmission are to occur
simultaneously then obviously contention will
exist for the use of the timer. It is possible to allow
the simultaneous reception and transmission of
serial data using the timer as a general clock which
controls software maintained timers. The attainable
baud rates using such techniques are, however,
limited and the use of a 8251 USART is probably

AP-24

indicated in all but the most cost sensitive applica-
tions. An exception to this rule occurs when the
system, although full duplex in nature, actually
transmits the same data as it receives. An example
of this is a microprocessor driving a terminal such
as a Teletype. Although the circuit to the terminal
is full duplex, the data that is transmitted is generally
the same as that received. A minor modification to
the program shown in Figure 26 would implement
this mode of operation. The modification would be
to the XISR routine and it would add the code
necessary to place the TxD I/O pin in the same
state as the RxD line. Since any change in RxD
results in a call to XISR, this modification would
cause the retransmission of any received data.
Whenever it becomes necessary to transmit data
which is not being received, the program of Figure
28 could be used in a half duplex manner.

Loc 0By B SOURCE STATEMENT

[]

l - R

2 : SERIAL TRANSMIT ON THE MCSAB

3 TO USE PUT A CHAR IN BUFF AND

4 SET CHARAV TO @FFH. WHEN THE

s TRANSMITTER 1S READY FOR ANDTHER
6 CHAR IT WILL CLEAR CHARAY. THE
7 TRANSMISSION 1S DOUBLE BUFFERED.

B el
9
0
1
2
13
0887 14 ATEMP EQU R7 STORAGE FOR A DURING INT.
8966 15 PTOS EQU R 5 PARALLEL TO SERIAL CONVERTER
LIS 16 BUFF £QU RS : CHARACTER BUFFER
LLIZ} 17 CHARAV EQU R4 1 CHARACTER AVAILABLE FLAG
[LIE} 18 COUNT EQu R3 © BIT COUNTER
e0EF 19 CBIT EQU BEFH 5 MASK TO CLEAR TXD IN P24
0810 29 SBIT EQu 8184 : MASK TO SET TXD [N P24
FED? 21 P €au -4 + PERIOD OF TXD
22
23 3 e

0287 26 0RG a7m

27 + ENTER INTERUPT MODE
8887 DS 28 TOFLO: SEL RB?
8808 AF 29 MOV ATEMP, A

kL i SET TIMER FOR P
8809 23D7 3 MOV A, 8P
009D 62 32 MoV T.A
#88C S5 33 STRT T

34 i+ GET BIT INTO CARRY
908D 141D 35 caLL BIT

36 i+ SET TXD TO CARRY

Loc 0By SEQ SOURCE STATEMENT
080F B8A 37 N a,P2
2018 D389 38 XRL A, #80H
0812 38 29 T P2,A
8013 F619 49 JC BITON
8915 9AEF 41 ANL P2, #CBIT
8917 9418 a2 e EXIT
8819 8A19 43 BITON: ORL P2, #SBIT
0018 FF 44 EXIT: MOV ALATEMP
#81C 93 a5 RETR

46

48 ; BIT ROUTINE
43 ; -PICKS THE NEXT BIT TO TRANSMIT

S8 ; snerereeseeneneseseeaoaaaaos
$1
801D FB 52 BIT: MOV A, COUNT
801€ C627 53 9z IDLE
6020 FE 54 MoV A.PTOS
0021 67 55 RRC A
8822 4388 56 ORL A, 888K
9824 AE S7 mov PTOS,A
8025 CB £ DEC COUNT
9026 83 59 RET
60
8827 97 61 [DLE: CLR c
9028 FC 62 MoV A, CHARAY
9029 962D 63 Nz GOTONE
0028 A7 64 cPL c
902C 83 =3 RET
3
002D FD 67 GOTONE: MOV &, BUFF
002 AE 66 mov PT0S, A
002F BBOA 69 v COUNT, 18
9931 BCOR 78 mov CHARAV, 8
2833 83 kAl RET
72 ; END OF PROGRAM
73 END

Figure 28. Serial Transmission

All mnemonics copyrighted © Intel Corporation 1976.

23

AP-24

GENERATING PARITY

Many communications schemes require the genera-
tion and checking of parity. If a USART is used
it can be programmed to automatically generate
and check parity. If the communications is handled
by software within the MCS-48™ then the program
must perform parity calculations. Calculating
parity is easy if one remembers what parity really
means. A character has even parity if the number
of one bits in it is even. A character has odd parity
if it has an odd number of ones. The program seg-
ment shown in Figure 29 can be caused to calculate
parity. It starts by setting a loop count to eight and

L0C 0BY SEa SOURCE STATEMENT

3

4 ; PARITY

5 ; THIS PROGRAM GENERATES PARITY

6 ON THE ACCUMULATOR

7 CARRY W(LL BE SET IF & HAS QDD PARITY
8

13 ; EGUATES
14 5 ceeeoen
15
0002 16 COUNT EQU R2
17
0190 18 PAR: ORG 1004
2160 BABS 19 Moy COUNT, 8 5 SET LOOP COUNT
0192 97 28 CLR c 5 INITIALIZE CARRY
21 5 FOR EACH 2ERD BIT [N A
22 3 COMPLEMENT THE CARRY FLAG
8183 77 23 LOOP: RR A
9184 1287 24 JBe aver
106 A7 25 CPL C
27 : END OF PROGRAM
28 END

Figure 29. Parity Generation

clearing the CARRY flag. After this initialization a
loop is executed eight times. During each execution
the accumulator is rotated and the least significant
bit is tested. If the bit is a zero the CARRY flag is
complemented, if the bit is a one no further action
is taken. Since an even number of zeros implies an
even number of ones for an eight bit character,
after all eight loops have been accomplished the
CARRY bit will be set if an odd number of ones
were encountered; it will be reset if the number
were even. Since the RR instruction does not
involve CARRY the net result of executing this
program loop is to set CARRY if parity is odd
without effecting the character in the accumulator.

n
intgl.
CONCLUSION

This Application Note has presented a very small
sampling of the application techniques possible
with the MCS-48™ family. The application of this
new single chip computer system to tasks which
have not yet yielded to the power of the micro-
processor will present a fascinating challenge to the
system designer.

All mnemonics copyrighted © intel Corporation 1976.

24

