intel

Intel® 440BX AGPset: 82443BX Host Bridge/Controller

Specification Update

April 1999

Notice: The Intel® 82443BX may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are documented in this Specification Update.

Order Number: 290639-005

intel

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Intel® 82443BX may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be obtained by calling 1-800-548-4725 or by visiting Intel's website at http://www.intel.com.

*Third-party brands and names are the property of their respective owners.

Copyright © Intel Corporation 1997, 1998, 1999

Revision History	4
Preface	5
Specification Changes	8
Errata	22
Specification Clarifications	24
Documentation Changes	25

Revision History

Rev.	Draft/Changes	Date
-001	Initial Release	May 1998
-002	Added Specification Changes #2 and #3.	July 1998
-003	Added Specification Changes #4, #5 and C1 Stepping Information.	October 1998
-004	Added Documentation Change #1	November 1998
-005	Added Documentation Change #2	April 1999

intel. Preface

This document is an update to the specifications contained in the Intel[®] 440BX AGPset Datasheet, Revision 1.0, Order number 290633, and contains issues affecting all designs using the Intel 82443BX Host Bridge/Controller. It is intended for hardware system manufacturers. It contains Specification Changes, Errata, Specification Clarifications, and Documentation Changes.

Nomenclature

Specification Changes are modifications to the current published specifications. These changes will be incorporated in the next release of the specifications.

Errata are design defects or errors. Errata may cause the Intel® 82443BX, behavior to deviate from published specifications. Hardware and software designed to be used with any given stepping must assume that all errata documented for that stepping are present on all devices.

Specification Clarifications describe a specification in greater detail or further highlight a specification's impact to a complex design situation. These clarifications will be incorporated in the next release of the specifications.

Documentation Changes include typos, errors, or omissions from the current published specifications. These changes will be incorporated in the next release of the specifications.

Component Identification via Programming Interface

Stepping	Vendor ID ¹	Device ID ²	Revision Number ³
B-1	8086h	7190h/7192h	02h
C-1	8086h	7190h/7192h	03h

The Intel® 82443BX may be identified by the following register contents:

NOTES:

1. The Vendor ID corresponds to bits 15-0 of the Vendor ID Register located at offset 00-01h in the PCI function 0 configuration space.

2. The Device ID corresponds to bits 15-0 of the Device ID Register located at offset 02-03h in the PCI function 0 configuration space. The default value is 7190h. When AGP is disabled, the value is 7192h.

3. The Revision Number correspond to bits 7-0 of the Revision ID Register located at offset 08h in the PCI function 0 configuration space.

4. The C-0 step device never entered production. As a result the C-1 step revision number ID remains 03h.

Component Marking Information

Stepping	S-Spec	Top Marking	Notes
B-1		FW82443BX Q628ES	Engineering Sample, FM Test
B-1		FW82443BX Q629ES	Engineering Sample, FM Test
B-1		FW82443BX Q630ES	Engineering Sample, T03 Test with Burn-In Full Production Flow
B-1	SL2T5	FW82443BX SL2T5	82443BX B-1 Production ASSY
C-1	SL2VH	FW82443BX SL2VH	82443BX C-1 Production ASSY
C-1	SL278	FW82443BX SL378	82443BX C-1 Remnants

The Intel® 82443BX may be identified by the following component markings:

intel

Summary Table of Changes

The following table indicates the Specification Changes, Errata, Specification Clarifications or Documentation Changes which apply to the listed Intel® 82443BX steppings. Intel intends to fix some of the errata in a future stepping of the component and to account for the other outstanding issues through documentation or Specification Changes as noted. This table uses the following notations:

Codes Used in Summary Table

X:	Erratum, Specification Change or Clarification that applies to this stepping.
Doc:	Document change or update that will be implemented.
Fix:	This erratum is intended to be fixed in a future stepping of the component.
Fixed:	This erratum has been previously fixed.
NoFix	There are no plans to fix this erratum.
(No mark) or (Blank Box):	This erratum is fixed in listed stepping or specification change does not apply to listed stepping.

1: This item is either new or modified from the previous version of the			
		docume	nt.
B1	C1	PLANS	SPECIFICATION CHANGES
Х	Х	DOC	Abort Disable Test Mode Configuration Bits
Х	Х	DOC	Selective Auto Precharge
Х	Х	DOC	Memory Data Buffer Strength Programming
Х	Х	DOC	Nand Tree testing
Х	Х	DOC	Processor PLL Lock Time
	B1 X X X X X X	B1 C1 X X X X X X X X X X X X X X X X X X X X X X X X	This iter documeB1C1PLANSXXDOCXXDOCXXDOCXXDOCXXDOCXXDOCXXDOC

NO.	B1	C1	PLANS	ERRATA
1	Х		FIX	Hard Reset Collision with Refresh
2	Х		FIX	IPDLT Bit Setting
3	Х		FIX	SDRAM Suspend Refresh
4	Х		FIX	Refresh Collision with SUS_STAT# assertion (EDO Memory)

NO.	B1	C1	PLANS	SPECIFICATION CLARIFICATIONS
				There are currently no know 82443BX Specification Clarifications.

NO.	B1	C1	PLANS	DOCUMENTATION CHANGES
1		Х	DOC	Marking Removed from C1 Stepping in Table of Changes Errata Section
2	Х	Х	DOC	Page iii is changed

Specification Changes

1. Abort Disable Test Mode Configuration Bits

Intel Reserved Register bits at offset F4h, bits 29 and 30 should be set to 1 for normal operation.

2. Selective Auto Precharge

Due to inconsistent behavior of the selective auto precharge feature with different SDRAM components, this feature will be removed from further revisions of the 82443BX External Design Specification. Bit 4 of the Paging Policy register, Offset 78-79h should be set to 0 (default). Bit 4 at Offset 78h will become an Intel Reserved bit location.

3. Memory Data Buffer Strength Programming

Characterization of the MD buffers has shown that the actual buffers are stronger than the simulated buffer strengths. As a result, new buffer strength settings are recommended in order to improve system noise margin. The new settings are described in the BIOS Specification Update, Rev 2.1 or later. Contact your local Intel Representative to obtain documentation.

4. 82443BX Nand Tree Testing

Intel® 82443BX Host Bridge/Controller Nand Tree Testing

This section provides information about the Nand tree testability features of the Intel 82443BX.

Test Mode Activation

The primary test mode is enabled via TESTIN# pin. To enable a Nand Tree primary test mode, the TESTIN# input pin is asserted low and a 3-bit binary pattern is presented on the PCI PREQ[2:0]# input pins. Table 1 shows the PREQ[2:0]# signal encoding for Nand tree test modes enabled via the TESTIN# pin.

Table 1: Primary Test Modes

PREQ[2:0]#	Test Mode Enabled
000	Nandtree A
001	Nandtree B

The Figure 1 timing diagram shows the sequence required to enable a primary test mode. Note that the TESTIN# input pin acts as a latch enable, and the PREQ[2:0]# pins act as latch inputs. The test mode is decoded from the output of the latch.

Tester Power-up Sequence

Figure 2 shows the typical power-up sequence of an 82443BX on a 256-pin tester.

At time 0, PCIRST# and TESTIN# must be asserted. The BXPWROK signal must also be asserted to indicate that a cold reset is in progress.

Once PCIRST# is deasserted, on the fourth DCLKWR positive edge, the TESTIN# can also be safely deasserted. PCIRST# and TESTIN# should not deassert at the same time because a race condition prevents the circuit from guaranteeing proper latching of primary test modes.

Figure 2: Typical power-up sequence

intel

Primary Test Mode Details

Nandtree A

The Nandtree A test mode is used for board level connectivity test. Its main purpose is to detect connectivity shorts between adjacent pins and to check proper bonding between I/O pads and I/O pins.

To help reduce the board level test cost, the Nand chain is limited to 60 pins per chain. This is accomplished by implementing 8 separate Nand chains.

A conceptual diagram of the Nandtree is shown in figure 3.

Figure 3: Nand Chain A0 Connectivity

An example Nandtree test is shown in Figure 4. At first, all the input pins are driven to logic 1. Next, each input pin is driven to logic 0, in a sequence, so that the output pin, in this case SBA[0], toggles. By observing the Nandtree output pin, one can detect shorted and unconnected pins.

Nand chain pin assignments are shown in the following tables.

Table 2: Signals Not Included in Nandtree A or Nandtree B

Signals	Purpose
BXPWROK	Used for cold reset
PCIRST#	Used for cold and warm reset
TESTIN#	Used to enter Nandtree A and B test modes

Table 3: Nandtree A Outputs

Signals	Purpose
SBA[0]	Nand-Chain A0 Output
SBA[1]	Nand-Chain A1 Output
SBA[2]	Nand-Chain A2 Output
SBA[3]	Nand-Chain A3 Output
SBA[4]	Nand-Chain A4 ¹ and A8 Output
SBA[5]	Nand-Chain A5 ¹ and A9 Output
SBA[6]	Nand-Chain A6 Output
SBA[7]	Nand-Chain A7 Output

Legend for Table 3:

¹ - When MMO mode is disabled, Nandtree chains A4 and A5 are also deactivated. When MMO mode is enabled, Nand chains A4 and A5 are active during Nandtree A test mode. The output of Nandtree chains A4 and A5 (when MMO mode is enabled) must always go through chains A8 and A9, respectively, before it comes out on SBA[4] and SBA[5]. MMO mode is the MAB7# strap configuration controlling the "mobile mode operation". When MMO mode is enabled the lower order Nand tree chains of the paired groups are also tested.

	Chain #A0		Chain #A1			Chain #A2		Chain #A3	
#	Pin Name	Pad#	Pin Name	Pad#		Pin Name	Pad#	Pin Name	Pad#
1	HA21#	111	HA15#	105		GNT3#	244	AD30	249
2	HA6#	114	HREQ0#	108		GNTO#	246	AD24	256
3	HA4#	116	HA18#	110		AD19	255	TRDY#	256
4	HA28#	119	HA23#	113		AD17	257	AD18	259
5	HA20#	121	HA31#	115		AD11	260	AD16	261
6	HA26#	131	BREQ0#	117		PAR	262	FRAME#	265
7	HA27#	133	HA10#	120		C/BE2#	263	IRDY#	267
8	HA30#	134	HA22#	123		AD15	266	AD12	268
9	HA24#	135	HD1#	129		STOP#	269	PLOCK#	270
10	CPURST#	137	HA11#	132		DEVSEL#	271	C/BE1#	275
11	HD32#	177	HD2#	138		SERR#	273	AD14	277
12	HD33#	179	HA29#	139		AD13	276	AD10	279
13	HD37#	181	HD4#	140		AD9	278	AD9	283
14	HD434#	182	HD0#	141		AD0	280	AD4	284
15	HD40#	183	HD3#	143		AD7	281	AD6	287
16	HD36#	185	HD8#	144		C/BEO#	285	AD2	288
17	HD35#	186	HD5#	145		AD5	289	AD1	291
18	HD44#	187	HD9#	146		AD3	290	CLKRUN#	373
19	HD34#	188	HD6#	147		MD34	382	WSC#	381
20	HD47#	189	HD7#	149		MD32	384	SUSTAT#	385
21	HD42#	191	HD10#	150		MD35	386	MD1	387
22	HD38#	192	HD12#	151		MD33	391	MD0	389
23	HD51#	193	HD14#	152		MD36	396	MD5	390
24	HD49#	194	HD15#	153		MD37	399	MD2	393
25	HD54#	195	HD17#	155		MD38	403	MD3	395
26	HD48#	197	HD11#	156		MD42	406	MD4	397
27	HD45#	198	HD18#	157		MD40	407	MD6	400
28	HD59#	199	HD13#	158		MD39	410	MD8	401
29	HD39#	200	HD20#	159		MD41	411	MD7	405
30	HD53#	201	HD16#	161		MD44	414	MD9	409
31	HD60#	203	HD21#	162		MD43	415	MD11	413
32	HD55#	204	HD19#	163	Π	MD45	417	MD15	419
33	HD63#	205	HD22#	165	Π	WEB#	427	MD10	420

intel

34	HD41#	206	HD25#	167	SCASA#	433	MECC0	421
35	HD58#	207	HD23#	168	DQMA4	437	MD14	423
36	HD62#	209	HD26#	169	MD46	438	MECC1	424
37	HD46#	210	HD29#	170	MD47	442	MECC4	425
38	HD61#	211	HD27#	171	SCASB#	444	MD12	428
39	HD57#	212	HD31#	173	MAB0#	453	MECC5	429
40	HD52#	213	HD29#	175	MAB2#	457	WEA#	431
41	HD56#	215	HD24#	176	MAB4#	459	MD13	432
42	HD50#	216	HD30#	180	MAB1#	464	DQMA0	434
43	REQ1#	217	GNT1#	219	MAB5#	465	CSA1#	441
44	REQ0#	221	REQ4#	220	MAB8#	467	CSA2#	443
45	GNT2#	222	PHLDA#	226	MAB9#	473	CSA4#	445
46	PHOLD#	223	REQ2#	228	MAB11#	476	CSA3#	446
47	AD31	225	AD28	229	MAB12#	477	SRASA#	447
48	AD29	227	AD26	232	MAB3#	480	DQMA1	450
49	AD25	231	C/BE3#	235	MAB13#	481	SCA5#	451
50	GNTA4#	233	AD22	237	MAB6#	494	CSA0#	452
51	AD27	234	REQ3#	242	MAB7#	496	DQMA5	456
52	AD23	293	AD20	243	MAB10	498	CKE0	483
53	AD21	241	PCLKIN	245	DCLKWR	499	SRASB#	484

int_{el},

	Chain #A4		Chain #A5	
#	Pin Name	Pad#	Pin Name	Pad#
1	DQMB1	435	MAA0	449
2	DQMB5	439	MAA2	455
3	CKE3	488	MAA4	458
4	CKE2	489	MAA6	461
5	CKE4	491	MAA5	463
6	CSB1#	495	MAA8	466
7	CSB0#	497	MAA9	469
8	CSB2#	501	MAA1	470
9	CSB3#	3	MAA10	471
10	CSB5#	5	MAA3	474
11	DCLKO	6	MAA11	475
12	CSB4#	9	MAA12	479
13			CKE1	485
14			CKE5	487
15			MAA7	490
16			MAA13	493
17*			DCLKRD*	4*

*NOTE: Chain #A5, DCLKRD: This pad/pin was in use as part of this chain for the B1 stepping of the 82443BX. This pad/pin was removed from the chain for the C1 stepping. This should be the only chain that fails on the 82443BX C1 stepping if the 82443BX B1 stepping Nand tree test are used. All pins tested after DCLKRD will give the opposite data when testing an 82443BX C1 step device with the 82443BX B1 step Nand tree test.

To repair the Nand tree test of Chain #A5/#A9 (MMO enabled) for the 82443BX C1 stepping, remove DCLCKRD from the test and invert the expected data for all pins (MAA13, MAA7, CKE5, CKE1, MAA12, MAA11, MAA3, MAA10, MAA1, MAA9, MAA8, MAA5, MAA6, MAA4, MAA2, and MAA0) which were tested following the DCLKRD pin.

intel

	Chain #A6		Chain #A7
#	Pin Name	Pad#	Pin Name
1	RBF#	292	GGNT#
2	GREQ#	294	ST2
3	ST1	295	GCLKIN
4	PIPE#	299	GAD26
5	ST0	302	GCLKO
6	SB-STB	305	GAD24
7	GAD31	315	GC/BE3#
8	GAD29	317	GAD30
9	GAD27	319	GAD22
10	GAD23	322	GAD20
11	GAD25	332	GAD-STBB
12	GAD17	333	GAD16
13	GC/BE2#	335	GAD18
14	GFRAME#	340	GSTOP#
15	GTRDY#	341	GIRDY#
16	GAD21	342	GAD28
17	GPAR	345	GC/BE1#
18	GAD19	347	GAD12
19	GAD15	350	GAD10
20	GAD13	352	GAD8
21	GDEVSEL#	355	GAD14
22	GAD11	357	GAD6
23	GAD7	361	GAD1
24	GC/BE0#	362	GAD4
25	GAD-STBA	365	GAD3
26	GAD5	367	GAD2
27	GAD9	370	
28	GAD0	374	

Pin Name	Pad#
GGNT#	293
ST2	298
GCLKIN	312
GAD26	323
GCLKO	324
GAD24	325
GC/BE3#	327
GAD30	328
GAD22	329
GAD20	331
GAD-STBB	336
GAD16	337
GAD18	339
GSTOP#	343
GIRDY#	346
GAD28	349
GC/BE1#	351
GAD12	353
GAD10	356
GAD8	359
GAD14	360
GAD6	363
GAD1	366
GAD4	369
GAD3	371
GAD2	375

int_{el}.

	Chain #A8]	Chain #A9	
#	Pin Name	Pad#		Pin Name	Pad#
1	DQMA6	8			
2	MECC2	13		DQMA2	7
3	DQMA7	15		DQMA3	11
4	MD50	18		MECC7	14
5	MD48	21		MECC6	17
6	MD49	27		MECC3	19
7	MD51	28		MD16	23
8	MD59	34		MD17	24
9	MD52	35		MD18	25
10	MD53	37		MD19	29
11	MD54	38		MD21	31
12	MD55	43		MD20	33
13	MD57	45		MD22	39
14	MD58	47		MD23	41
15	MD56	49		MD24	44
16	MD61	55		MD25	48
17	MD62	57		MD27	51
18	MD63	59		MD28	53
19	CRESET#	63		MD29	54
20	MD60	64		MD26	58
21	RS0#	69		MD31	61
22	RS2#	71		MD30	66
23	HREQ3#	75		RS1#	68
24	HREQ2#	77		HCLKIN	70
25	HREQ4#	81		HIT#	73
26	HREQ1#	83		DBSY#	76
27	BPRI#	85		DEFER#	79
28	BNR#	88		HITM#	82
29	HLOCK#	90		DRDY#	84
30	HA5#	93		HTRDY#	87
31	HA14#	95		HA9#	89

intel

32	HA13#	97	HA3#	91
33	ADS#	101	HA7#	94
34	HA16#	104	HA8#	96
35	HA19#	107	HA12#	99
36	HA25#	109	HA17#	103

Figure 5: Waveform of Nandtree Chain Pair up (A4 and A8) & (A5 and A9)

Nandtree B

The Nandtree B test mode is used to test the SBA[7:0] pins. These pins are outputs during the Nandtree A test mode and are not tested in that mode. In Nandtree B test mode, the SBA[[7:0] signals become inputs and the CRESET# pin becomes the output.

Table 5: Nandtree B Outputs

Signals	Purpose
CRESET#	Nand-Chain B0 Output

Table 6: Nandtree B Chain #B0

	Chain #B0	
#	Pin Name	Pad#
1	SBA0	297
2	SBA1	301
3	SBA2	303
4	SBA3	307
5	SBA4	308
6	SBA6	309
7	SBA5	311
8	SBA7	313

Figure 6: Diagram of Nandtree B Test mode

5. Processor PLL Lock Time Affects 82443BX

The 82443BX requires a minimum of 60uS between the deassertion of CPU__STP# and the deassertion of SUSTAT# for a CPU C3 exit. The 82443BX requires a minimum of 100uS between the deassertion of CPU__STP# and the deassertion of SUSTAT# for a cold boot.

The PIIX4/PIIX4E register CNTB-Count B (Function 3) at address offset 48h - 4Bh [10:6] (processor PLL lock count bits) and [5] (processor PLL lock resolution bit) control the processor lock time and resolution function. The default value of this register is 00h. These bits must be programmed to insure the 82443BX minimum time requirements between the deassertion of the signals are met.

1. Hard Reset Collision with Refresh

- **Problem:** During a software generated hard reset, if a DRAM refresh cycle coincides with the activation of PCIRST#, the system will hang.
- Implication: The system will hang.
- **Workaround:** The system BIOS must disable refresh before generating the reset sequence. Refer to the 82443BX BIOS Specification Update for more details.
- **Status:** This erratum will **not** be fixed in the B-1 stepping of the 82443BX. This erratum will be fixed in the C-0 stepping of the 82443BX.

2. IPDLT Bit Setting

- **Problem:** System validation has uncovered a marginal internal timing path.
- **Implication:** An incorrect address may be driven on the DRAM bus, resulting in memory data being fetched from the wrong location.

Workaround: The IPDLT bits (register offset 76h, bits 8 and 9) should be set to 01 (i.e. set bit 8 to 1).

Status: BIOS workaround (configuration register change). This erratum will also be fixed in the next stepping of the 82443BX.

3. SDRAM Suspend Refresh

Problem: This erratum may occur in Intel 440BX chipset platforms that implement suspend or Stop Clock (C3) states. Platforms that are affected include mobile SDRAM platforms using module MM-config mode (single CKE) and 4 DIMM desktop platforms using GCKE.

These platforms require the 440BX memory controller to stop the normal refresh and place the SDRAM in a self-refresh mode before the system transitions to one of these states. If the self-refresh trigger (SUSTAT1# signal asserted) occurs at the same time as an internally generated normal refresh request, the 440BX generates an incorrect CKE# and CS# signal sequence to the SDRAM. The SDRAM is not placed in self-refresh mode and memory contents may be lost.

Mobile SDRAM platforms using normal mode (not MM-config) and 3 DIMM desktop platforms are not affected. 4 DIMM desktop platforms that do not use GCKE are also not affected.

Implication: The observed effect of the erratum is a system hang, although data loss or corruption is theoretically possible.

Workaround: APM BIOS workaround:

POS, POSCCL, POSCL, STR and C3 states The workaround disables normal refresh prior to entering these states and before the 443BX automatically generates the SDRAM self-refresh command. BIOS will re-enabling normal refresh on exit from these states.

ACPI BIOS workaround (TBD):

Status: Implement BIOS workaround. This erratum will also be fixed in the next stepping of the 82443BX.

4. Refresh Collision with SUS_STAT# assertion (EDO Memory)

- **Problem:** On entry to STR or POSCL in a system with EDO memory, if SUSSTAT1# is asserted at the same time a DRAM refresh cycle occurs the normal refresh state machine is left in an improper state. Refresh control is transferred to the suspend refresh state machine which is not affected. When the system resumes from STR, refresh control is returned to the normal refresh state machine which is in an improper state.
- **Implication:** The system will hang, typically with RAS# stuck high and CAS stuck low. During the execution of the resume code, operation will continue until the BIOS sets the NREF_EN bit to a 1 (443BX, Device#0, Register Offset 7Ah, bit4).
- **Workaround:** A BIOS workaround consisting of aligning the occurrence of the 443BX north bridge refresh cycles away from the transitions of PIIX4 south bridge SUSCLK# (which controls the assertion of SUSSTAT#) is available.
- **Status:** Implement BIOS workaround. This erratum will also be fixed in the next stepping of the 82443BX.

Specification Clarifications

There are currently no known 82443BX Specification Clarifications.

Documentation Changes

1. Marking Removed from C1 Stepping in Table of Changes Errata Section.

Marking in C1 Stepping "Table of Changes" Errrata Section in the previous release of Intel® 440BX Specification Update document does not apply.

2. Page iii, Intel 82443BX Features list, of the 440BX AGPset: 82443BX Host Bridge/Controller Data Sheet.

The "Integrated DRAM controller" section of the Intel 82443BX Features list on page iii of the Intel® 440BX AGPset: 82443BX Host Bridge/Controller data sheet is changed as follows:

The first item is changed to read:

"--- 128Mbit SDRAM technology is supported as stated in para 4.3 of page 4-14 of this document. As a result, 8Mbytes to 1Gbyte of memory is available depending on system implementation."

The last item is changed to read:

"--- Enhanced SDRAM Open Page Architecture Support for 16-, 64-, and 128-Mbit SDRAM technology devices with 2K, 4K, and 8K page sizes."

Intel around the world

United States and Canada

Intel Corporation Robert Noyce Building 2200 Mission College Boulevard P.O. Box 58119 Santa Clara, CA 95052-8119 USA Phone: (800) 628-8686

Europe

Intel Corporation (U.K.) Ltd. Pipers Way Swindon Wiltshire SN3 1RJ UK

Phone:

(44) 1793 403 000
(49) 89 99143 0
(33) 1 4571 7171
(39) 2 575 441
(972) 2 589 7111
(31) 10 286 6111
(46) 8 705 5600

Asia Pacific

Intel Semiconductor Ltd. 32/F Two Pacific Place 88 Queensway, Central Hong Kong, SAR Phone: (852) 2844 4555

Japan

Intel Kabushiki Kaisha P.O. Box 115 Tsukuba-gakuen 5-6 Tokodai, Tsukuba-shi Ibaraki-ken 305 Japan Phone: (81) 298 47 8522

South America

Intel Semicondutores do Brazil Rua Florida 1703-2 and CJ22 CEP 04565-001 Sao Paulo-SP Brazil Phone: (55) 11 5505 2296

For More Information

To learn more about Intel Corporation, visit our site on the World Wide Web at www.intel.com

