Controlled Impedance Design and Test

Intel Corporation

int_{el}.

Agenda

- Statement of Objective
- Background
- AC Timing and Signal Quality
- Impedance Fundamentals
- Design Guidelines
- •Testing Board Impedance (TDR)

Intel's

_abs

•Summary and Conclusions

Objective

The objective of this presentation is to provide information to assist OEMs and PCB vendors to design and test motherboards which will meet a 28 Ω (+/- 10%) impedance specification

Background

- Existing motherboards are designed around 65 Ω +/-15%
- The new 28 Ω +/-10% specification is required by the memory channel
- Exceeding the specification results in additional channel timing error and reduced signal margin

_abs

 Both effects may cause failures on the memory channel

Signal Quality and Timing

- RDRAM Channel is designed for 28 Ω
- Impedance mismatch causes signal reflections
- Reflections reduce voltage and timing margins
- AC Timings are tight!
 - ♦ 2X clock @ 400MHz Operation = 1.25ns window
 - ♦ Only 100 150 ps allowed for total channel timing error
 - ♦ PCB impedance is only one factor
- PCB process variation -> Z0 variation -> Channel error

THIS IS WHY HITTING 28 Ω is critical

RDRAM Signal Routing

Data Signal and Sampling

- Data is sampled on both edges of the clock
 - ♦ 625ps data window
- 0.8V low signal swing between logic 0 and 1, signal swing reference at 1.4V

Impedance Fundamentals

- Microstrip vs Stripline
- PCB Parameters and Relationship to Impedance
- Simulation Tools (Field Solvers) and Impedance Calculators
- PCB Materials
- Chipset Example

Microstrip X-Section

 $Z0 = F(W,H,T,\varepsilon)$

EQUATIONS FOR Z0 USED IN ZCAL PROGRAM

Stripline X-Section

 $Z0 = F(W,H1,H2,T,\epsilon)$

EQUATIONS FOR Z0 USED IN ZCAL PROGRAM

PCB Parameters

- H tolerance is hardest to control
- W & T has less impact due to wider trace
- Z0 can be calculated from geometries
 - Equations (like zcalc) are approximate
 - ♦3D Field Solvers also used to calculate impedance
- Plot of Z0 variation with various parameters (W, H, ε_r, T) shows impact
 - Also show what tolerances we need to hit for the various geometries

Z0 vs H (W=18mils, T=1.4mils, ε_r =4.5)

int_{el}.

Intel's Labs

Z0 vs W (H=4.5mils, T=1.4mils,

intel

Intel's Labs

Z0 vs ε_r (H=4.5mils, W=18mils, T=1.4mils)

int_{el}.

Z0 vs T (H=4.5mils, W=18mils, ϵ_r =4.5)

intel

Impedance Calculation

- 3D Field Solvers are most accurate
 - ♦ HP, Ansoft, Sonnet, Polar etc
- Z calculators based on equations are also pretty accurate

	#1	#2	#3	#4	#5	#6
H	4.5	4.5	4.2	4.8	4.5	4.5
W	18	18	18	18	17	19
W1	18.1	18.1	18.1	18.1	17.1	19.1
Т	1.4	2.8	1.4	1.4	1.4	1.4
Er	4.5	4.5	4.5	4.5	4.5	4.5
ZO (3D)	29.0	28.4	27.6	30.4	30.2	27.9
Z0 (zcalc)	29.1	28.7	27.7	30.4	3.02	28.0

3D Field Solver vs ZCALC

PCB Materials

• PCB tolerances determine Z0 variation

- Dielectric thickness, trace width, plating thickness, dielectric constant and solder mask thickness
- Pre-preg style type and characteristics determine H variation
 - single ply vs. 2-ply
 - resin content and tolerance
 - ♦ flow tolerance

- Recommended material tolerances:
 - ◆ Dielectric height tolerance +/- 10% (~ 0.4mil)
 - ◆ Trace width tolerance +/- 3% (~ 0.5mil)
 - ◆ Pre-preg resin content tolerance +/- 3%
 - ◆ Pre-preg resin flow tolerance +/- 3%
- **intel**[®] ◆ e_r tolerance +/- 5% (~0.2) @ 1GHz

Design Process

- Specify material to be used
- Calculate board geometries for desired impedance or use example stackup
- Build test boards and coupons
- Measure board impedance using TDR
 - ◆ Need accurate data follow TDR methodology
- Measure geometries with x-section
- Adjust design parameters and/or material as required
- Build new board and re-measure
 - May require one or two iterations

intel

Design Guidelines

- Several reference stackups provided
- Test coupon should be included on panel
 - If possible, integrate test coupon pattern into board
 - Makes lot sampling easier, more accurate
 - Test coupon probe pattern
 - Must match probe type
 - ♦Gerber file is available
- Don't forget about other traces on PCB!
 - Need to adjust other trace widths to meet impedance requirements for different busses Intel's

Labs

intel[®]

Recommended Stackup

- Numerous variations are possible
- We used the following as a starting point:
 - W=18mil, H=4.5mil, T=2.0, 1 ply 2116 prepreg

Don't forget ground floods and stitching

Inner Layer Routing

- Also numerous possible stackups
- We used the following as a starting point:
 - ♦W=13.5mil, H1=7mil, H2=5, T=1.2

intel[®]

Testing Board Impedance

- TDR Basics
- Test Equipment
- Test Coupon
- Test Procedure
- HVM Testing
- Reference Collateral

TDR Basics

- High-edge rate pulse transmitted to DUT
- DUT reflects wave
- Reflected wave measured by scope
- Impedance of DUT determines reflected voltage amplitude
- Scope and/or software calculates impedance based on reflected wave amplitude

♦PLOT OF TDR OF SHORT/OPEN/50 OHM

• Propagation delay can also be measured intel

Labs

TDR of 50 Ohm Load

Labs

TDR of Open

Labs

TDR Test Equipment

- Tektronix 11801C
 using SD24 TDR test head
 HP54750A
 HP54753A Single Ended TDR
 HP54754A Differential TDR
- Polar CITS500S

Test Coupon

- Use test coupon for ease of testing
 - ♦ Gerbers for an example coupon are available
- Test coupon placement
 - Coupon can be designed as part of motherboard
 - ♦ Ideally located in memory section of board
 - Or have separate coupon somewhere on panel
- Test coupon probe pattern
 - Pattern depends on test equipment and probes
 - Land pattern must match test probe used

GND

GND

intel[®]

Test Coupon Design

- Test coupon routing should match routing guidelines for RDRAM bus
 - ◆ Follow trace to trace spacing rules
 - Ground shields required to control etch and reduce coupling
 - Ground traces will affect trace impedance, so they must be included in test coupon
- Signal trace routing
 - Route straight (no bends) for best results
 - ♦ End of trace should be open no pad or via
- Ground pads required for probing
 - Microstip Signal and ground pad
 - Stripline Signal and pad for each reference plane Intel's

Labs

intel[®]

Test Procedure

- Equipment calibration is critical
 - Careful calibration is required for accurate results
 - Procedure is defined in TDR Methodology Doc
 - ♦ 28 Ohm standard should be used to verify test setup
- Probing techniques
 - Standard high-frequency probes are acceptable
 - Discontinuity at probe tip must be minimized
 - Minimize ground lead length
 - Probe ground pad should be near signal pad
- Reading the data
 - Impedance will vary along transmission line
 - Ringing will also affect measurement
 - (Beginning (near probe) of line will have more error

TDR Measurement

Maximize the display

- Display Adjustment:
 Line launch pt on
 - first column.
 - Reflection on last column
 - Utilize vertical scaling to maximize screen

intel. Proper display adjustment is important

TDR Measurement Measure the average mean

- Measure the response correctly:
 - Region should be after midpoint slightly before reflection region
 - Take average impedance of the mean region

Inte Measure the right region and take average

Rambus 28 Ω Measurement

Calibrate against a standard

• Determine equivalent error at probe tip

Standard can determine error Intel's

Labs

intel

Rambus 28 Ω Measurement Use error as an offset

- Compare standard value against measured value
 - <u>Measure standard with cable connected</u>
- Use difference between measured and actual
- Shift spec window by that amount
- Example:
 - Calibrated value = 25 Ohms
 - Measured value = 27 Ohms
 - Difference = + 2 Ohms

Shift measurement window by error value

Intel's Labs

intel

Standards

Standard value must be close to spec

- Option 1)*preferred
 - 28 ohm airline
 - 15 cm min length
- Option 2)
 - Two 50 ohm airlines connected in parallel (25 Ohms)
 - 15 cm min length

Airline standards provide best accuracy

HVM Testing

- Test at 100% for early production
 - Avoid excursions on first production units
 - Use recommended TDR test probes
- Lot to Lot checks (sample)
 - Once stability of materials & process have been established
- Frequent calibration recommended
 - ♦ Use 28 Ohm calibration standard
 - Use Intel recommended calibration method for offset calculation
- Place coupon in middle of panel to minimize error

Labs

♦ Or a minimum of 0.8" from edge of panel

X-section data to check for process variations
 intel[®]

Reference Collateral

<u>Collateral</u>	By	<u>Available</u>
PCB Test Methodology Doc	Intel	WWW
TDR Theory (AN 1304-2)	HP	WWW

URLs:

Company

Tektronix

<u>URL</u>

Intel Corporation http://developer.intel.com/ial/home/sp/index.htm **Hewlett-Packard** www.tmo.hp.com/tmo/ www.tek.com/Measurement/scopes/ www.polar.co.uk

Polar

Summary and Conclusion

- Meeting 28 Ω +/-10% requirement is critical for a solid motherboard design
- Board and trace geometries can be calculated, or use reference design
- Material tolerances need to be analyzed using x-section measurements
- Test builds will be required to dial in process
- Accurate impedance measurements are required to verify design

Intel's

Labs

int_{el}.