
Intel
MMX™ Technology
Overview

Order Number: 243081-002

March 1996

 MMXTM Technology Overview E

2

Information in this document is provided in connection with Intel products. No license under any patent or copyright is granted
expressly or implied by this publication. Intel assumes no liability whatsoever, including infringement of any patent or copyright,
for sale and use of Intel products except as provided in Intel’s Terms and Conditions of Sale for such products.

Intel retains the right to make changes to these specifications at any time, without notice. Microcomputer Products may have
minor variations to their specifications known as errata.

*Other brands and names are the property of their respective owners.

Copyright © Intel Corporation 1996

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing product orders.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be
obtained from:
Intel Corporation
P.O. Box 7641
Mt. Prospect IL 60056-764
or call 1-800-879-4683

MMXTM Technology Overview

3

CONTENTS

PAGE

INTRODUCTION ...4

DATA TYPES..6
Data Types in 64-bit Registers ...6

COMPATIBILITY..6

DETECTING THE PRESENCE OF MMX™ TECHNOLOGY ..7

INSTRUCTIONS...7
MMX™ Instruction Set Summary..7

Instruction Examples..8

APPLICATION EXAMPLES...11
Conditional Select..11

Chroma Keying..11

Matrix Multiply..13

24-Bit Color ...14

Image Dissolve Using Alpha Blending...15

SUMMARY ...17

RELATED DOCUMENTATION ...17

MMXTM Technology Overview

5

INTRODUCTION
The volume and complexity of data processed by today’s personal computer are increasing
exponentially, placing incredible demands on the microprocessor. New communications, games
and “edutainment” applications feature video, 3D graphics, animation, audio and virtual reality, all
of which demand ever increasing levels of performance.

Intel’s MMXTM technology is designed to accelerate multimedia and communications applications.
The technology includes new instructions and data types that allow applications to achieve a new
level of performance. It exploits the parallelism inherent in many multimedia and communications
algorithms, yet maintains full compatibility with existing operating systems and applications.

MMX technology is the most significant enhancement to the Intel Architecture since the Intel386TM

processor, which extended the architecture to 32 bits. Processors enabled with MMX technology
will deliver enough performance to execute compute-intensive communications and multimedia
tasks with headroom left to run other tasks or applications. They allow software developers to
design richer, more exciting applications for the PC. The volume of MMX technology-enabled
systems will grow rapidly in 1997 as the technology is incorporated into multiple processor
generations from Intel.

The definition of MMX technology resulted from a joint effort between Intel’s microprocessor
architects and software developers. A wide range of software applications was analyzed, including
graphics, MPEG video, music synthesis, speech compression, speech recognition, image
processing, games, video conferencing and more. These applications were broken down to identify
the most compute-intensive routines, which were then analyzed in details using advanced
computer-aided engineering tools. The results of this extensive analysis showed many common,
fundamental characteristics across these diverse software categories. The key attributes of these
applications were:

• Small integer data types (for example: 8-bit graphics pixels, 16-bit audio samples)

• Small, highly repetitive loops

• Frequent multiplies and accumulates

• Compute-intensive algorithms

• Highly parallel operations

MMX technology is designed as a set of basic, general purpose integer instructions that can be
easily applied to the needs of the wide diversity of multimedia and communications applications.
The highlights of the technology are:

• Single Instruction, Multiple Data (SIMD) technique

• 57 new instructions

• Eight 64-bit wide MMX registers

• Four new data types

The basis for MMX technology is a technique called Single Instruction, Multiple Data (SIMD).
This allows many pieces of information to be processed with a single instruction, providing
parallelism that greatly increases performance. This technology combined with the IA superscalar
architecture will provide substantial performance enhancement to the PC platform. MMX
technology is integrated into Intel Architecture processors in a way that maintains full
compatibility with existing operating systems, including MS DOS*, Windows* 3.1, Windows 95,
OS/2* and Unix*. In addition, the full base of Intel architecture software will run on MMX
technology-enabled systems.

MMX technology was defined to be simple. MMX technology is general enough to address the
needs of a large domain of PC applications built from current and future algorithms. MMX
instructions are not privileged; they can be used in applications, codecs, algorithms, and drivers.

MMXTM Technology Overview

6

DATA TYPES
The principal data type of the IA MMX instruction set is the packed, fixed-point integer, where
multiple integer words are grouped into a single 64-bit quantity. These 64-bit quantities are moved
into the 64-bit MMX registers. The decimal point of the fixed-point values is implicit and is left for
the programmer to control for maximum flexibility. The supported data types are signed and
unsigned fixed-point integers, bytes, words, doublewords and quadwords.

The four MMX technology data types are:

• Packed byte Eight bytes packed into one 64-bit quantity

• Packed word Four 16-bit words packed into one 64-bit quantity

• Packed doubleword Two 32-bit double words packed into one 64-bit quantity

• Quadword One 64-bit quantity

As an example, graphics pixel data are generally represented in 8-bit integers, or bytes. With MMX
technology, eight of these pixels are packed together in a 64-bit quantity and moved into an MMX
register. When an MMX instruction executes, it takes all eight of the pixel values at once from the
MMX register, performs the arithmetic or logical operation on all eight elements in parallel, and
writes the result into an MMX register.

Data Types in 64-bit Registers

 63 0

 63 56 55 48 47 40 39 32 31 24 23 16 15 8 7 0

 Packed byte (eight 8-bit elements)

 63 48 47 32 31 16 15 0

 Packed word (four 16-bit elements)

Quadword (64-bit element)

 63 32 31 0

 Packed doubleword (two 32-bit elements)

COMPATIBILITY
MMX technology retains its full compatibility with existing operating systems and applications by
aliasing its registers and state upon the IA floating-point registers and state. Therefore, no new
registers or states are added to support MMX technology. This means that the operating system
uses the standard mechanisms for interacting with the floating point state to save and restore MMX
code. For example, during a task switch, the operating system would use an FSAV and FRSTR to
preserve either floating point or MMX code. Aliasing the MMX state upon the floating-point state
does not preclude applications from executing both MMX technology routines and floating point
routines.

Floating-point instructions that save/restore the floating-point state also handle the MMX state (for
example, during context switching). The same techniques used by the floating-point architecture to
interface with the operating system are used by MMX technology. MMX technology does not
introduce any new exception or state information, so today’s operating systems can enable
applications using MMX instructions.

MMXTM Technology Overview

7

DETECTING THE PRESENCE OF MMX™ TECHNOLOGY
Detecting the existence of MMX technology on an Intel microprocessor is done by executing the
CPUID instruction and checking a set bit. This gives software developers the flexibility to
determine the specific code in their software to execute. During install or run time the software can
query the microprocessor to determine if MMX technology is supported and install or execute the
code that includes, or does not include, MMX instructions based on the result.

INSTRUCTIONS
The MMX instructions cover several functional areas including:

• Basic arithmetic operations such as add, subtract, multiply, arithmetic shift and multiply-add

• Comparison operations

• Conversion instructions to convert between the new data types - pack data together, and
unpack from small to larger data types

• Logical operations such as AND, AND NOT,OR, and XOR

• Shift operations

• Data Transfer (MOV) instructions for MMX register-to-register transfers, or 64-bit and 32-bit
load/store to memory

Arithmetic and logical instructions are designed to support the different packed integer data types.
These instructions have a different op code for each data type supported. As a result, the new
MMX technology instructions are implemented with 57 op codes.

MMX technology uses general-purpose, basic instructions that are fast and are easily assigned to
the parallel pipelines in Intel processors. By using this general-purpose approach, MMX
technology provides performance that will scale well across current and future generations of Intel
processors.

MMXTM Technology Overview

8

MMX™ Instruction Set Summary
The instructions and corresponding mnemonics in the table below are grouped by function
categories.

If an instruction supports multiple data types—byte (B), word (W), doubleword (DW), or
quadword (QW), the datatypes are listed in brackets. Only one data type may be chosen for a
given instruction. For example, the base mnemonic PADD (packed add) has the following
variations: PADDB, PADDW, and PADDD. The number of opcodes associated with each base
mnemonic is listed.

Category Mnemonic

Number of
Different
Opcodes Description

Arithmetic PADD[B,W,D]

PADDS[B,W]

PADDUS[B,W]

PSUB[B,W,D]

PSUBS[B,W]

PSUBUS[B,W]

PMULHW

PMULLW

PMADDWD

3

2

2

3

2

2

1

1

1

Add with wrap-around on [byte, word, doubleword]

Add signed with saturation on [byte, word]

Add unsigned with saturation on [byte, word]

Subtraction with wrap-around on [byte, word, doubleword]

Subtract signed with saturation on [byte, word]

Subtract unsigned with saturation on [byte, word]

Packed multiply high on words

Packed multiply low on words

Packed multiply on words and add resulting pairs

Comparison PCMPEQ[B,W,D]

PCMPGT[B,W,D]

3

3

Packed compare for equality [byte, word, doubleword]

Packed compare greater than [byte, word, doubleword]

Conversion PACKUSWB

PACKSS[WB,DW]

PUNPCKH

 [BW,WD,DQ]

PUNPCKL

 [BW,WD,DQ]

1

2

3

3

Pack words into bytes (unsigned with saturation)

Pack [words into bytes, doublewords into words]

 (signed with saturation)

Unpack (interleave) high-order

 [bytes, words, doublewords] from MMXTM register

Unpack (interleave) low-order

 [bytes, words, doublewords] from MMX register

Logical PAND

PANDN

POR

PXOR

1

1

1

1

Bitwise AND

Bitwise AND NOT

Bitwise OR

Bitwise XOR

Shift PSLL[W,D,Q]

PSRL[W,D,Q]

PSRA[W,D]

6

6

4

Packed shift left logical [word, doubleword, quadword] by

 amount specified in MMX register or by immediate value

Packed shift right logical [word, doubleword, quadword] by

 amount specified in MMX register or by immediate value

Packed shift right arithmetic [word, doubleword] by

 amount specified in MMX register or by immediate value

Data Transfer MOV[D,Q] 4 Move [doubleword, quadword] to MMX register or from

 MMX register

FP & MMX
State Mgmt

EMMS 1 Empty MMX state

MMXTM Technology Overview

9

Instruction Examples
The following section will describe briefly five examples of MMX instructions. For illustration, the
data type shown in this section will be the 16-bit word data type; most of these operations also exist
for 8-bit or 32-bit packed data types.

The following example shows a packed add word with wrap around. It performs four additions of
the eight, 16-bit elements, with each addition independent of the others and in parallel. In this
case, the right-most result exceeds the maximum value representable in 16-bits—thus it wraps-
around. This is the way regular IA arithmetic behaves. FFFFh + 8000h would be a 17 bit result.
The 17th bit is lost because of wrap around, so the result is 7FFFh.

a3 a2 a1

b3 b2 b1
+ + + +

a3+b3 a2+b2 a1+b1

FFFFh

8000h

7FFFh

PADD[W]: Wrap-around Add

The following example is for a packed add word with unsigned saturation. This example uses the
same data values from before. The right-most add generates a result that does not fit into 16 bits;
consequently, in this case saturation occurs. Saturation means that if addition results in overflow
or subtraction results in underflow, the result is clamped to the largest or the smallest value
representable. For an unsigned, 16-bit word, the largest and the smallest representable values are
FFFFh and 0x0000; for a signed word the largest and the smallest representable values are 7FFFh
and 0x8000. This is important for pixel calculations where this would prevent a wrap-around add
from causing a black pixel to suddenly turn white while, for example, doing a 3D graphics
Gouraud shading loop.

a3 a2 a1

b3 b2 b1
+ + + +

a3+b3 a2+b2 a1+b1

FFFFh

8000h

FFFFh

PADDUS[W]: Saturating Arithmetic

The specific instruction here is Packed Add Unsigned Saturation Word (PADDUSW). A complete
set of ADD operations exists for signed and unsigned cases. The number FFFFh, treated as
unsigned (65,535 decimal), is added to 0x8000 unsigned (32,768), and the result saturates to FFFFh
- the largest representable unsigned 16-bit value.

There is no “saturation mode bit” as a new mode bit would require a change to the operating
system. Separate instructions are used to generate wrap-around and saturating results.

The next example shows the key instruction used for multiply-accumulate operations, which are
fundamental to many signal processing algorithms like vector-dot-products, matrix multiplies, FIR
and IIR Filters, FFTs, DCTs etc. This instruction is the packed multiply add (PMADD).

MMXTM Technology Overview

10

a3 a2 a1 a0

b3 b2 b1 b0
** **

a3*b3+a2*b2 a1*b1+a0*b0
PMADDWD: 16b x 16b -> 32b Multiply Add

The PMADD instruction starts from a 16-bit, packed data type and generates a 32-bit packed, data
type result. It multiplies all the corresponding elements generating four 32-bit results, and adds
the two products on the left together for one result and the two products on the right together for
the other result. To complete a multiply-accumulate operation, the results would then be added to
another register which is used as the accumulator.

The following example is a packed parallel compare. This example compares four pairs of 16-bit
words. It creates a result of true (FFFFh), or false (0000h). This result is a packed mask of ones for
each true condition, or zeros for each false condition. The following example shows an example of
a compare “greater than” on packed word data. There are no new condition code flags, nor are any
existing IA condition code flags affected by this instruction.

23 45 16

31 7 16

gt ? gt ? gt ? gt ?

0000h FFFFh 0000h

34

67

0000h

PCMPGT[W]: Parallel Compares

The packed compare result can be used as a mask to select elements from different inputs using a
logical operation, eliminating the need for a branch or a set of branch instructions. The ability to do
a conditional move instead of using branch instructions is an important performance enhancement
in advanced processors that have deep pipelines and employ branch prediction. A branch based on
the result of a compare operation on the incoming data is usually difficult to predict, as incoming
data in many cases can change randomly. Eliminating branches that are used to perform data
selection by using the conditional select capability, together with the parallelism of the MMX
instruction set, is an important performance enhancement feature of the MMX technology.

The following is an example of a pack instruction. It takes four 32-bit values and packs them into
four 16-bit values, performing saturation if one of the 32-bit source values does not fit into a 16-bit
result. There are also instructions that perform the opposite - unpack, for example, a packed byte
data type into a packed word data type.

b0’ a1’b1’

b1 b0

a1 a0

a0’
PACKSS[DW]: Pack Instruction

MMXTM Technology Overview

11

The pack and unpack instructions exist to facilitate conversion between the new packed data types.
These are especially important when an algorithm needs higher precision in its intermediate
calculations, as in image filtering. A filter on an image usually involves a set of multiply
operations between filter coefficients and a set of adjacent image pixels, accumulating all the
values together. These multiplies and accumulations need more precision than 8-bits, the original
data type of the pixels. The solution is to unpack the image’s 8-bit pixels into 16-bit words,
perform the calculations in 16-bit words without concern for overflow, then pack back to 8-bit
pixels before storing the filtered pixels to memory.

APPLICATION EXAMPLES
The following section describes example uses of the MMX instruction set to implement basic
coding structures:

Conditional Select
Multimedia applications must process large sets of data. In some cases there is a need to select the
data based on a condition query performed on the incoming data. Intel has been able to improve
performance in its family of processors by implementing micro-architectural features for increased
performance and deeper pipelines. Branch prediction is an important part of making the pipelines
run efficiently, as a misprediction can cause the pipelines to flush and degrade performance. The
following example shows an efficient way to reduce the need to use branch instructions, especially
those that are data dependent, and thus very difficult to predict. The Chroma Keying example
demonstrates how conditional selection using the MMX instruction set removes branch mis-
predictions, in addition to performing multiple selection operations in parallel. Text overlay on a
graphics/video background, and sprite overlays in games are some of the other operations that
would benefit from this technique.

Chroma Keying
Most have seen the television weather man overlaid on the image of a weather map. In this
example we use a green screen to overlay an image of a woman on a picture of spring blossom.
We’ll illustrate this example by processing four 16-bit pixels in parallel. The instructions also
allow the processing of eight 8-bit pixels in parallel for a substantial performance speed-up
potential.

+ =
First we’ll take four pixels from the picture with the woman on a green background. The top row
of the data below represents pixels that alternate between green, not green, green, and not green.
The compare instruction builds a mask for that data. That mask is a sequence of words that are all
ones or all zeros representing the Boolean values of true and false. We now know what is the
unwanted background and what we want to keep. This is shown below using a shadow picture.

MMXTM Technology Overview

12

X1=green X2!=green X3=green X4!=green

green green green greenpcmpeqw

0xFFFF 0x0000 0xFFFF 0x0000bitmask
4 pixel/cycle

This mask is now used on the same four pixels from the picture with the woman and the equivalent
four pixels from the Spring blossom. The “AND NOT” and “AND” instructions use the mask to
identify which pixels to keep from the Spring blossom and the woman. They also turn the
unwanted pixels to zeros. The “OR” instruction builds the final picture. Four pixels were mapped
using only four MMX instructions without any branches.

In working through this example, the PANDN instruction inverts all the bits in mask before
applying the AND operation.

0xFFFF 0x0000 oxFFFF 0x0000

X1 X2 X3 X4pandn

0xFFFF 0x0000 oxFFFF 0x0000

Y1 Y2 Y3 Y4pand

0x0000 X2 ox0000 X4

Y1 0x0000 Y3 0x0000por
Y1 X2 Y3 X4

Without MMX technology, each pixel is processed separately and requires a conditional branch.
Using MMX instructions, eight 8-bit pixels can be processed in parallel and no conditional
branches are involved.

Vector Dot Product
The vector dot product is one of the most basic algorithms used in signal-processing of natural data
such as images, audio, video and sound. The following example shows how the PMADD
instruction helps speed up algorithms using vector dot products. The PMADD instruction will
handle four multiplies and two additions at a time. Coupled with a PADD instruction, as described
before, eight multiply-accumulate operations are performed. These eight element vectors fit nicely
into two PMADD instructions and two PADD instructions.

Assuming that the precision supported by the PMADD instruction is sufficient, this dot-product
example on eight-element vectors can be completed using eight MMX instructions: Two
PMADDs, two more PADDs, two shifts (if needed to fix the precision after the multiply operation),
and two memory moves to load one of the vectors (the other vector is loaded by the PMADD
instruction which can have one of its operands come from memory).

MMXTM Technology Overview

13

a0 a1 a2 a3 a4 a5 a6 a7

c0 c1 c2 c3 c4 c5 c6 c7* * * * * * * *

a0*c0+a1*c1 a2*c2+a3*c3 a4*c4+a5*c5 a6*c6+a7*c7

Accumulator

Note: Input data and coefficients are 16-bit precision.
If not, first unpack to 16 bit.

Pmaddwd

+Paddd +

Shift to right precision if needed Shift to right precision if needed

x = ∑ a(i) * c(i)

Comparing instruction counts with and without MMX technology for this operation yields the
following:

Number of Instructions without
MMXTM Technology

Number of
MMX Instructions

Load 16 4

Multiply 8 2

Shift 8 2

Add 7 1

Miscellaneous - 3

Store 1 1

Total 40 13

With MMX technology, one third of the number of instructions is needed.

Most MMX instructions can be executed in one clock cycle, so the performance improvement will
be more dramatic than the simple ratio of instruction counts.

Matrix Multiply
Exciting new 3D games are coming to market every day. Typically, computations that manipulate
3D objects are based on 4-by-4 matrices that are multiplied with four element vectors many times.
The vector has the X,Y, Z and perspective corrective information for each pixel. The 4-by-4
matrix is used to rotate, scale, translate and update the perspective corrective information for each
pixel. This 4-by-4 matrix is applied to many vectors.

MMXTM Technology Overview

14

a0 a1 a2 a3

b0 b1 b2 b3

c0 c1 c2 c3

d0 d1 d2 d3

x

y

z

1

x’

y’

z’

w’

=

Rotate & Scale Translate

Perspective

x’ = a0x + a1y + a2z + a3

Applications which already use 16-bit integer or fixed-point data are able to make extensive use of
the PMADD instruction. There would be one PMADD instruction per row in the matrix, for a total
of four. Comparing instruction counts with and without MMX technology for this operation yields
the following:

Number of Instructions without
MMXTM Technology

Number of
MMX instructions

Load 32 6

Multiply 16 4

Add 12 2

Miscellaneous 8 12

Store 4 4

Total 72 28

With MMX technology, less than one half of the number of instructions without MMX technology
is needed.

24-Bit Color
The MMX instruction set offers graphical applications the opportunity to move from 8-bit or 16-bit
color lookup table to 24-bit, or “true” color, a feature which will greatly enhance the realism of a
game’s graphics. In many cases, this can be done in the same amount of time that is currently
required for 8-bit graphics. For 24-bit and 32-bit colors, red, green and blue are each represented
by 8-bit values. There are eight additional bits in 32-bit color for alpha value.

MMXTM Technology Overview

15

Image compositing and alpha blending are operations that can be performed on 24-bit color
images.

R

G

B

alpha Value from 0 to 255

Image Representation

Image Dissolve Using Alpha Blending
This example shows how the MMX instruction set will speed up image compositing. In this
example, a flower will dissolve into a swan. The screen starts with a picture of the flower. As the
flower gradually fades away, the swan gradually appears.

The math for the dissolve is a straight-forward function. Alpha determines the intensity of the
flower. At full intensity, the flower’s 8-bit alpha value is FFH, or 255. By plugging 255 in the
dissolve equation, each flower pixel is 100 percent and each swan pixel is 0 percent. The equation
below calculates each pixel:

Result_pixel = Flower_pixel * (alpha/255) + Swan_pixel * [1 - (alpha/255)]

Illustrated below are the flower and swan when alpha = 230:

* 230/255 * 1 - 230/255+ =

When the alpha value is 230, the resulting picture is 90 percent flower and 10 percent swan. On
close examination, some of the swan image appears in the picture to the right of the equal sign.

This example assumes that the 24-bit color data is organized so that four pixels at a time are
processed from one color plane, that is, the image is separated into individual color planes: one for
red, one for green, one for blue. The first four red values from the flower and the swan will be
processed first. After finishing the red plane, the processing moves to the green and blue planes.

MMXTM Technology Overview

16

The unpack instruction takes the first four bytes of the red data that are represented in 8-bit values
and unpacks each pixel into 16-bit elements, putting them into a 64-bit MMX register. The alpha
value, which is computed once per frame, is the other operand. The PMUL multiplies the two
vectors in parallel. Similarly, an unpack and PMUL create the intermediate result for the swan.
Now the two intermediate results are added together using a PADD and the final result is sent to
memory using a PACK that converts the intermediate 16-bit values back to 8-bit pixel values that
can be stored.

R
G

B
alpha value = %

Flower R

G
B

Swan

r0r1r2r3

r0r1r2r3

90%90%90%90%
X

Same operation on image B
with (1 - alpha (A))

90 * r090 *r190 *r290 * r3

new r3 new r2 new r1 new r0

r0r1r2r3
Pack

Unpack

Computations are done per
color plane.
4 pixels are computed in
parallel.

90% 10%alpha value = %

10 * r010 *r110 *r210 * r3
Add

If these images use 640X480 resolution, and the dissolve technique uses all 255 steps of the alpha
value, then 117 million PUNPCKs and PMULs, and 58 million PADDs and PACKs are used.
Comparing instruction counts with and without MMX technology for this operation yields the
following:

Operation
Calculation

without MMXTM Technology

Number of Instructions
without MMX

Technology
Number of MMX

Instructions

Load (640*480)*255*3*2 470 million 117 million

Unpack - - 117 million

Multiply (640*480)*255*3*2 470 million 117 million

Add (640*480)*255*3 235 million 58 million

Pack - - 58 million

Store (640*480)*255*3 235 million 58 million

Total 1.4 billion 525 million

Almost 1 billion fewer instructions are used in this example.

The dissolve technique, sometimes called combine, is one of several commonly used image
compositing techniques used in multimedia applications and can be sped up substantially with
MMX technology.

MMXTM Technology Overview

17

Combine Dissolve: Fade in, fade out effect
A * alpha(A) + B * (1 - alpha(A))

A over B Transparent Image placed on background
A + (B * (a - alpha(A)))

A in B Image A only where B has Opacity
A * alpha (B)

A out B Image A only where B has transparency
A * (1 - alpha(B))

A top B (A in B) over B
(A * alpha(B)) + (B * (1 - alpha(A)))

A XOR B (B * (1 - alpha(A))) + (A * (1 - alpha(B)))

Alpha blending is a technique used by game developers that is similar to image compositing. Alpha
blending allows race cars to drive realistically through fog or smoke, allows a more realistic view
of fish in water, or a rabbit in a translucent tube. In these examples, the alpha values wouldn’t
necessarily be the same for the whole frame, but the basic concept remains the same.

SUMMARY
MMX technology brings more power to multimedia and communication applications. MMX
technology adds new data types and instructions that can process data in parallel. MMX technology
is fully compatible with existing operating systems and application software.

MMX technology brings a step improvement to the PC platform and enables new applications and
usage of PCs. It helps establish a new paradigm in the industry with the PC as an improved
communications and multimedia device. Systems enabled with MMX technology will ramp in high
volume in 1997 as Intel incorporates the technology in multiple processor generations.

RELATED DOCUMENTATION
Refer to the following documentation for more information on MMX technology.

• Intel Architecture MMXTM Technology Developers’ Manual (Order Number 243013)

• Intel Architecture MMXTM Technology Programmer’s Reference Manual (Order Number
243007)

Refer to Intel’s corporate website for the latest information on related documentation:

http://www.intel.com/

1

	INTRODUCTION
	DATA TYPES
	Data Types in 64-bit Registers

	COMPATIBILITY
	DETECTING THE PRESENCE OF MMX™ TECHNOLOGY
	INSTRUCTIONS
	MMX™ Instruction Set Summary
	Instruction Examples

	APPLICATION EXAMPLES
	Conditional Select
	Chroma Keying
	Vector Dot Product
	Matrix Multiply
	24-Bit Color
	Image Dissolve Using Alpha Blending

	SUMMARY
	RELATED DOCUMENTATION

