
Documentation for the 1-Wire Net Public Domain Kit

Version 2.00

Copyright (C) 2000 Dallas Semiconductor

Steps to Use the 1-Wire Public Domain Kit 2-3

Device Listing . 4-5

1-Wire Application Interface . 6-9
Link-Level 1-Wire Net Functions 6-7
Network-Level 1-Wire Net Functions 7-8
Transport-Level 1-Wire Net Functions 8
File-Level 1-Wire Net Functions 8-9
Session-Level 1-Wire Net Functions 9

General API Code . 10-11
Required API 10
Generated API 10
Optional API 11

Userial API Code . 12-13
Required API 12
Optional API 13

2

Steps to Use the 1-Wire Public Domain Kit

Step 1: Do we support your platform?

There are two sets of portable source files. The first set is general purpose and is
intended for platforms that already have the primitive link-level 1-Wire Net
communication functions. This is the lowest level that is hardware dependent and
is called ‘general’.

The ‘userial’ set of portable source files assumes that the user has a serial port
(RS232) and wishes to utilize our 'Universal Serial 1-Wire Line Driver Master
chip' called the DS2480. This chip receives commands over the serial port,
performs 1-Wire Net operations and then sends the results back to the serial port.

Platforms currently supported:
Operating System Compiler Library Name
Windows 32-bit Visual C userial uWin32VC
Windows 32-bit GNU userial uWin32GNU
Windows 32-bit TMEX general gTMEXVC
Linux GNU userial uLinuxGNU
Beos GNU userial uBeosGNU

Yes:
Use the existing link files. You may also want to download example builds from
the Public Domain kit (\’uWin32VC’, \’gTMEXVC’, \’uWin32GNU’,
\’uLinuxGNU’, \’uBeosGNU’)depending on the platform you’re using.

No:
Look at other links as examples. We recommend looking at ‘lib\general\Link’ or
‘lib\userial\Link’ section in the Public Domain Kit. Please refer to pages 8-11 of
this document for General and Userial Application Interface Code.

Serial port? ‘userial’
else use ‘general’

3

Step 2: How do you build applications?

You will need files from each of these directories:

Example: ‘\source\apps\temp’

Application(s)
‘\source\apps’

Common Module(s)
‘\source\common’

Library Files
(general or userial)

‘\lib\general’ or
‘\lib\userial’

Link File

‘\lib\general\Link’
or

 ‘\lib\userial\Link’

Application

temp.c

Common Modules

temp10.c
findtype.c
ownet.h
crcutil.c

Library Files
(Userial)

ds2480.h
ds2480ut.c

owllu.c
ownetu.c
owsesu.c
owtrnu.c

Link File

win32lnk.c

4

Device Listing

Example applications and ‘C’ modules for specific 1-Wire devices are listed below by
Dallas Semiconductor part number.
This section is provided to quickly find code resources specific to a 1-Wire device type.

• DS1820/DS18S20/DS1920
Example Code for the DS1820/DS18S20/DS1920 can be found in:

‘\source\common\’
temp10.c

 An example application can be found in:
‘\source\apps\temp’
‘\source\apps\mweather’

temp.c
mweather.c

• DS1921
Example Code for the DS1921 can be found in:

‘\source\common\’
thermo21.c
thermo21.h

 An example application can be found in:
‘\source\apps\thermo’

thermodl.c
thermoms.c

• DS1963S
Example Code for the DS1963S can be found in:

‘\source\common\’
ibsha18.c
ibsha18o.c
ibhsa18.h

 An example application can be found in:
‘\source\apps\ibsha’

initcopr.c
initrov.c
debit.c
isbhaut.c

5

• DS2405
Example Code for the DS2405 can be found in:

‘\source\common\’
swt05.c

 An example application can be found in:
‘\source\apps\swtsngl’

swtsngl.c

• DS2406/DS2407
Example Code for the DS2406/DS2407 can be found in:

‘\source\common\’
swt12.c

 An example application can be found in:
‘\source\apps\swtlpop’
‘\source\apps\mweather’

swtoper.c
swtloop.c
mweather.c

• DS2409
Example Code for the DS2409 can be found in:

‘\source\common\’
swt1f.c

 An example application can be found in:
‘\source\apps\coupler’

coupler.c
• DS2423

Example Code for the DS2423 can be found in:
‘\source\common\’

cnt1d.c
 An example application can be found in:

‘\source\apps\counter’
‘\source\apps\mweather’

counter.c
mweather.c

• DS2450
Example Code for the DS2450 can be found in:

‘\source\common\’
atod20.c

 An example application can be found in:
‘\source\apps\atodtst’
‘\source\apps\mweather’

atodtst.c
mweather.c

6

1-Wire Application Interface

This section provides a brief description of the API functions contained in the ‘general’
and ‘userial’ 1-Wire libraries.

Link-Level 1-Wire Net functions:

owTouchReset
Reset all devices on the 1-Wire Net. Result of function indicates if any
devices were detected

 owTouchBit
 Send and receive 1 bit from the 1-Wire Net

 owTouchByte
 Send and receive 8 bits from the 1-Wire Net

 owWriteByte
 Send 8 bits to the 1-Wire Net and verify the echo received matches.
 (constructed from owTouchByte)

 owReadByte
Receive 8 bits from the 1-Wire Net by sending all 1's (0xFF) and letting
the slave change the echo.

 (constructed from owTouchByte)

 owSpeed
Set the communication speed of the 1-Wire Net to Normal (16K bits) or
Overdrive (142K bits).

 All 1-Wire devices at least support the Normal communication rate.

 owLevel
Set the 1-Wire Net line level to Normal (5V weak pullup), Power Delivery
(5V strong pullup), or Program Level (12V EPROM programming level).

 Power delivery only required by some 1-Wire devices.
Programming level only required to write EPROM based memory 1-Wire
devices.

7

owProgramPulse
 Timed programming pulse for EPROM 1-Wire device writing.

Can be constructed from owLevel.
 Only required to write EPROM based memory 1-Wire devices.

Network-level 1-Wire Net functions:

owFirst
 Search to find the 'first' 1-Wire device on the 1-Wire Net.

All 1-Wire Net devices have a unique 64-bit serial number.
The order the devices are found is serial number dependent.
The serial number found can be retrieved after this function using
owSerialNum.

owNext
Search to find the 'next' 1-Wire device on the 1-Wire Net based on the last
search done. The serial number found can be retrieved after this function
using owSerialNum. If owNext returns FALSE then the end of the search
has been found. Calling owNext again will reset the search and find the
'first' device again.

 owSerialNum
 Retrieve or set the currently selected device serial number.

 owFamilySearchSetup
 Setup the following search (owNext) to find a specific family type.

The first 8 bits of the unique serial number indicate the 'family' that the
device belongs to. The 'family' lets the application know what type of
commands the device requires. The owSerialNum function must be called
after the search has been performed to verify the correct family type was
found. If it is not the correct family type then there are no devices of that
type on the 1-Wire Net.

 owSkipFamily
Skip all of the family type that was found in the last search. The next
search (owNext) will find a new type or come to the end of the search.

 owAccess
 Select the current device by Serial Number. The selection is done by
resetting the 1-Wire Net, sending the 'MATCH ROM' command followed
by the current serial number. At the end of this operation only the current
device is listening on the 1-Wire Net for a device specific command.

8

owVerify
Selects and verifies that the current device by Serial Number is on the 1-
Wire Net. This function uses the ‘search' command to select and verify
the device is in contact with the Net.

 owOverdriveAccess
Select the current device by Serial Number and place it and the 1-Wire
Net into Overdrive communication speed.

Transport-level 1-Wire Net functions:

owBlock
Send and receive blocks of data to the 1-Wire Net. A reset is optionally
done on the 1-Wire before the data is sent. This API is more efficient than
sending data with multiple 'owTouchByte' calls.

 owReadPacketStd
Read standard UDP packet structure from a memory 1-Wire device. See
'Dallas Semiconductor Application Note 114' for a description of this
structure.
(function options may change on future versions of this code)

 owWritePacketStd
 Write standard UDP packet structure into the memory of 1-Wire device.
 (function options may change on future versions of this code)

 owProgramByte
 Program a byte to an EPROM based 1-Wire device memory.
 (function options may change on future versions of this code)

File-level 1-Wire Net functions:

owReadFile
 Read a TMEX file structure file from the memory of a 1-Wire device.

Not all 1-Wire devices supported.
See 'Dallas Semiconductor Application Note 114' for a description of the
TMEX file structure.

 (function options may change on future versions of this code)

9

 owFormatWriteFile
Format and then write a TMEX file structure file into the memory of a 1-
Wire device. Not all 1-Wire devices supported. See 'Dallas
Semiconductor Application Note 114' for a description of the TMEX file
structure. (function options may change on future versions of this code)

Session-Level 1-Wire Net functions:

owAcquire
 Attempts to acquire a 1-Wire net

 owRelease
 Releases the previously acquired a 1-Wire net

10

General API Code

The 'general' code set sends commands that rely on the following 1-Wire Net link-
level functions.

The following is a description of the API needed to port this code set to any platform.
See the 'TODO.C' and 'TODOSES.C' files in the directory '\source\lib\general'.

Required API that must be implemented for the 'general' code
set to function:

 owTouchReset
 Reset all devices on the 1-Wire Net. Result of function indicates if any devices
 were detected.

 owTouchBit
 Send and receive 1 bit from the 1-Wire Net

API that can be generated from the required API:

 owTouchByte
Send and receive 8 bits from the 1-Wire Net. This can be contructed from 8 calls
to owTouchBit but it may be for efficient to create this API.

 owWriteByte
 Send 8 bits to the 1-Wire Net and verify the echo received matches.
 (constructed from owTouchByte)

 owReadByte
Receive 8 bits from the 1-Wire Net by sending all 1's (0xFF) and letting the slave
change the echo.
(constructed from owTouchByte)

11

Optional API that may be needed for the platform or for a specific
application.

 owSpeed
Set the communication speed for the 1-Wire Net to Normal (16K bits) or
Overdrive (142K bits). All 1-Wire devices at least support the Normal
communication rate. This API need only be implemented if Overdrive
communication rate is desired.

 owLevel
Set the 1-Wire Net line level to Normal (5V weak pullup), Power Delivery (5V
strong pullup), or Program Level (12V EPROM programming level). Power
delivery only required by some 1-Wire devices such as the DS1820, DS2450, and
DS1954. Programming level only required to write EPROM based memory 1-
Wire devices.

 owProgramPulse
Timed programming pulse for EPROM 1-Wire device writing. Can be
constructed from owLevel. Only required to write EPROM based memory 1-Wire
devices.

 msGettick
Return an increment millisecond counter. This is used in several of the sample
applications.

 msDelay
Delay at least the specified number of milliseconds. This is used in several of the
sample applications.

owAcquire
 Attempts to acquire a 1-Wire net

owRelease
 Releases the previously acquired a 1-Wire net

12

Userial API Code

The 'userial' code set sends commands designed for the DS2480 'Universal
Serial 1-Wire Line Driver Master chip'. It can be made to work on any serial
port that can do 9600, N, 8, 1.

The following is a description of the API needed to port this code set to any
platform. See the 'TODO.C' file in the directory '\source\lib\userial'.

Required API that must be implemented for the 'userial' code
set to function:

 ReadCOM
Read a specified number of bytes from the serial COM port. This API
must timeout if the specified number of bytes have not arrived. The
timeout is dependent on the 1-Wire operations the platform but a good rule
of thumb is 10 - 20ms per byte.

 WriteCOM
 Write a specified number of bytes to the serial COM port.

 FlushCOM
 Allow any pending write operations to complete. Clear any bytes read.

 BreakCOM
 Send a 'BREAK' on the serial COM port last at least 2 milliseconds.

 msDelay
 Delay at least the specified number of milliseconds. This
 is used in the DS2480 detect sequence.

13

Optional API that may be needed for the platform or for a specific
application.

 OpenCOM
Open the specified serial COM port for communication. Most High-level
OS's will need this. If not needed then just return success. Start the COM
port out at 9600, N, 8, 1.

 CloseCOM
Close the previously opened (OpenCOM) serial COM port. Most High-
level OS's will need this.

 SetCOMBaud
Change the serial BAUD rate to the rate specified. This need only be
supported if Overdrive communication speeds are desired.

 msGettick
Return an increment millisecond counter. This is used in several of the
sample applications.

	Documentation for the 1-Wire Net Public Domain Kit
	Steps to Use the 1-Wire Public Domain Kit 	 2-3
	Device Listing 		. 4-5
	General API Code		. 10-11
	Userial API Code		. 12-13

	Steps to Use the 1-Wire Public Domain Kit
	
	
	
	
	
	Windows 32-bit		Visual C	 userial	 uWin32VC

	Device Listing

	temp10.c
	Example Code for the DS1921 can be found in:
	‘\source\common\’
	thermo21.c
	Example Code for the DS1963S can be found in:
	‘\source\common\’
	ibsha18.c
	ibsha18o.c
	ibhsa18.h
	Example Code for the DS2405 can be found in:
	‘\source\common\’
	swt05.c
	Example Code for the DS2406/DS2407 can be found in:
	‘\source\common\’
	swt12.c
	Example Code for the DS2409 can be found in:
	‘\source\common\’
	swt1f.c
	Example Code for the DS2423 can be found in:
	‘\source\common\’
	cnt1d.c
	Example Code for the DS2450 can be found in:
	‘\source\common\’
	atod20.c
	General API Code
	
	Optional API that may be needed for the platform or for a specific
	Userial API Code
	ReadCOM
	FlushCOM
	BreakCOM
	SetCOMBaud

