
DS5001FP 128K Soft Microprocessor Chip

www.dalsemi.com

FEATURES

- 8051-compatible microprocessor adapts to its task
 - Accesses up to 128 kbytes of nonvolatile SRAM
 - In-system programming via on-chip serial port
 - Can modify its own program or data memory
 - Accesses memory on a separate byte-wide bus
 - Performs CRC-16 check of NV RAM memory
 - Decodes memory and peripheral chip enables
- Crashproof operation
 - Maintains all nonvolatile resources for over 10 years
 - Power-fail Reset
 - Early warning power-fail interrupt
 - Watchdog timer
 - Lithium backs user SRAM for program/data storage
 - Precision band-gap reference for power monitor
- Fully 8051-compatible
 - 128k bytes scratchpad RAM
 - Two timer/counters
 - On-chip serial port
 - 32 parallel I/O port pins
- Software Security Available with DS5002FP Secure Microprocessor

PIN ASSIGNMENT

DESCRIPTION

The DS5001FP 128k Soft Microprocessor Chip is an 8051-compatible microprocessor based on nonvolatile RAM technology. It is designed for systems that need large quantities of nonvolatile memory. Like its predecessor the DS5000(T), the DS5001FP is substantially more flexible than a standard 8051. It provides full compatibility with the 8051 instruction set, timers, serial port, and parallel I/O ports. By using NV RAM instead of ROM, the user can program, then reprogram the microprocessor while insystem. The application software can even change its own operation. This allows frequent software upgrades, adaptive programs, customized systems, etc. In addition, by using NV SRAM, the DS5001FP

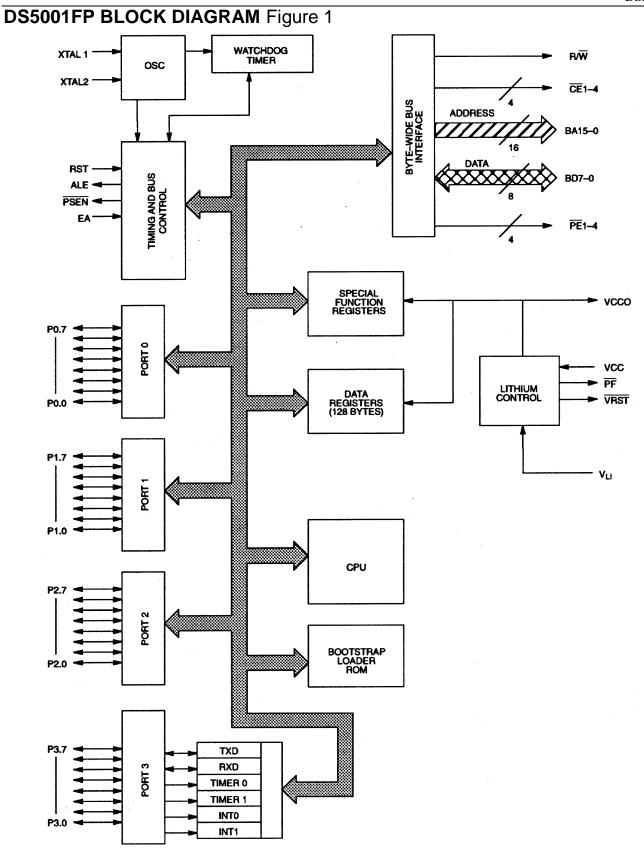
1 of 24 052599

is ideal for data logging applications. It also connects easily to a Dallas real time clock for time stamp and date.

The DS5001FP provides the benefits of NV RAM without using I/O resources. It uses a non-multiplexed byte-wide address and data bus for memory access. This bus can perform all memory access and provides decoded chip enables for SRAM. This leaves the 32 I/O port pins free for application use. The DS5001FP uses ordinary SRAM and battery backs the memory contents with an external lithium cell. Data is maintained for over 10 years at room temperature with a very small lithium cell. A DS5001FP also provides crashproof operation in portable systems or systems with unreliable power. These features include the ability to save the operating state, power-fail reset, power-fail interrupt, and watchdog timer.

A user loads programs into the DS5001FP via its on-chip Serial Bootstrap Loader. This function supervises the loading of software into NV RAM, validates it, then becomes transparent to the user. Software can be stored in multiple 32-kbyte or one 128-kbyte CMOS SRAM(s). Using its internal partitioning, the DS5001FP can divide a common RAM into user selectable program and data segments. This partition can be selected at program loading time, but can be modified anytime later. The microprocessor will decode memory access to the SRAM, access memory via its byte-wide bus and write-protect the memory portion designated as ROM. Combining program and data storage in one device saves board space and cost.

The DS5001FP offers several bank switches for access to even more memory. In addition to the primary data area of 64 kbytes, a peripheral selector creates a second 64-kbyte data space with four accompanying chip enables. This area can be used for memory mapped peripherals or more data storage. The DS5001FP can also use its expanded bus on Ports 0 and 2 (like an 8051) to access an additional 64 kbytes of data space. Lastly, the DS5001FP provides one additional bank switch that changes up to 60 kbytes of the NV RAM program space into data memory. Thus with a small amount of logic, the DS5001 accesses up to 252 kbytes of data memory.


For a user who wants a preconstructed module using the DS5001FP, RAM, lithium cell, and a real time clock, the DS2251T is available and described in separate data sheet. More details are also contained in the User's Guide section of the Secure Microcontroller Data Book. For users who desire software security, the DS5002FP is functionally identical to the DS5001FP but provides the best firmware security available.

ORDERING INFORMATION

The following devices are available as standard products from Dallas Semiconductor:

PART #	DESCRIPTION
DS5001FP-16	80-pin QFP,
	Max. clock speed 16 MHz,
	0°C to 70°C operation

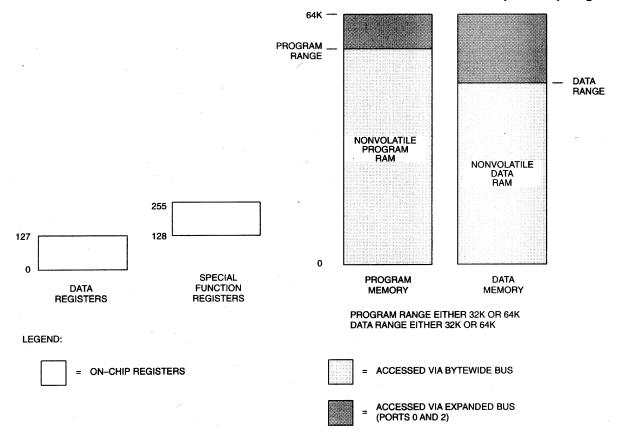
Operating information is contained in the User's Guide Section of the Secure Microprocessor Data Book. This data sheet provides ordering information, pinout, and electrical specifications.

PIN DESCRIPTION

PND DESCRIPTION 11, 9, 75, 51, 19, 97, 75 11, 97, 77, 75 11, 97, 75 11, 97, 75 11, 97, 75 11, 97, 75 120 130 140 150 151 179, 77, 75 150 151 179, 77, 75 150 151 179, 77, 75 150 151 179, 77, 75 150 151 179, 77, 75 151 179, 77, 75 151 179, 77, 75 151 179, 77, 75 151 179, 77, 75 179 179, 77, 75 179 179 179 179 179 179 179 179 179 179	PIN DESCR	
oxtending pullups. Poor 0 is also the multiplexed expanded address/data bus. When used in this mode, it does not require pullups. 15, 17, 19, 21, 27, 29, 31 49, 30, 51, 56, P2.0 - P1.7. General purpose I/O Port 1. 25, 27, 29, 31 49, 30, 51, 56, P2.0 - P2.7. General purpose I/O Port 2. Also serves as the MSB of the address in expanded memory accesses, and as pins of the RPC mode when used. 78 79 79 79 79 79 79 79 79 79	PIN	DESCRIPTION No. 20 To 1 To
Not require pullups.		
15, 17, 19, 21, 21, 22, 27, 29, 31 49, 50, 51, 56, 56, 64, 66 36 37 38 38 38 39 39 39 39 39 39 39	79, 77, 75	
 25. 27, 29, 31 49, 50, 51, 55 58, 60, 64, 66 36 RXD. General purpose I/O port pin 3.0. Also serves as the MSB of the address in expanded memory accesses, and as pins of the RPC mode when used. 36 RXD. General purpose I/O port pin 3.0. Also serves as the receive signal for the on board UART. This pin should NOT be connected directly to a PC COM port. 38 R3.1 TXD. General purpose I/O port pin 3.1. Also serves as the transmit signal for the on board UART. This pin should NOT be connected directly to a PC COM port. 39 P3.2 TXTO. General purpose I/O port pin 3.2. Also serves as the active low External Interrupt 0. 40 P3.3 TXTI. General purpose I/O port pin 3.4. Also serves as the active low External Interrupt 1. 41 P3.4 TB. General purpose I/O port pin 3.5. Also serves as the Timer 0 input. 44 P3.5 TI. General purpose I/O port pin Also serves as the write strobe for expanded bus operation. 45 P3.6 WR. General purpose I/O port pin Also serves as the read strobe for expanded bus operation. 46 P3.7 RD. General purpose I/O port pin Also serves as the read strobe for expanded bus operation. 47.8 RD. General purpose I/O port pin Also serves as the read strobe for expanded bus operation. 48.7 RD. General purpose I/O port pin Also serves as the read strobe for expanded bus operation. 49.8 P3.7 RD. General purpose I/O port pin Also serves as the write strobe for expanded bus operation. 49.8 P3.7 RD. General purpose I/O port pin Also serves as the read strobe for expanded bus operation. 49.8 P3.7 RD. General purpose I/O port pin Also serves as the read strobe for expanded bus operation. 49.8 P3.7 RD. General purpose I/O port pin Also serves as the write strobe for expanded bus ope	15 15 10 21	
 49, 50, 51, 56, 66 82.0 - P2.7. General purpose I/O Port 2. Also serves as the MSB of the address in expanded memory accesses, and as pins of the RPC mode when used. 36 B2.0 RXD. General purpose I/O port pin 3.0. Also serves as the receive signal for the on board UART. This pin should NOT be connected directly to a PC COM port. 38 B2.1 RXD. General purpose I/O port pin 3.1. Also serves as the ransmit signal for the on board UART. This pin should NOT be connected directly to a PC COM port. 40 P3.3 INTI. General purpose I/O port pin 3.3. Also serves as the active low External Interrupt 0. 41 P3.4 TD. General purpose I/O port pin 3.3. Also serves as the active low External Interrupt 1. 41 P3.4 TD. General purpose I/O port pin 3.4. Also serves as the "Timer 0 input." 45 P3.6 WR. General purpose I/O port pin 3.5. Also serves as the Timer 1 input. 46 P3.7 BG. General purpose I/O port pin 3.5. Also serves as the read strobe for expanded bus operation. FSEN - Program Store Enable. This active low signal is used to enable an external program memory when using the expanded bus. It is normally an output and should be unconnected if not used. PSEN also is used to invoke the Bootstrap Loader. At this time, PSEN will be pulled down externally. This should only be done once the DS5001FP is already in a reset state. The device that pulls down should be open drain since it must not interfere with PSEN under normal operation. 34 RST - Active high reset input. A logic 1 applied to this pin will activate a reset state. This pin is pulled down internally so this pin can be left unconnected if not used. An RC power-on reset circuit is not needed and is NOT recommended. 47. 48 RST - Active high reset input. A logic 1 applied to this pin will activate a reset state. This pin is pulled down internally so this pin can be left unconnected if not used.		P1.0 - P1.7. General purpose I/O Port 1.
58, 60, 64, 66 accesses, and as pins of the RPC mode when used.		DAA DAT C 1 1/O D (A A1 A1 MCD C) 1 1 1 1 1 1 1 1
86 P3.0 RXD. General purpose I/O port pin 3.0. Also serves as the receive signal for the on board UART. This pin should NOT be connected directly to a PC COM port. 97.1 TXD. General purpose I/O port pin 3.1. Also serves as the transmit signal for the on board UART. This pin should NOT be connected directly to a PC COM port. 98.2 INTO. General purpose I/O port pin 3.2. Also serves as the active low External Interrupt 0. 98.3 INTO. General purpose I/O port pin 3.3. Also serves as the active low External Interrupt 1. 98.4 TO. General purpose I/O port pin 3.4. Also serves as the Timer 0 input. 98.5 TO. General purpose I/O port pin 3.4. Also serves as the Timer 1 input. 98.6 WR. General purpose I/O port pin Also serves as the transmit signal for the observation. 98.7 RD. General purpose I/O port pin 3.4. Also serves as the Timer 1 input. 98.7 RD. General purpose I/O port pin Also serves as the write strobe for expanded bus operation. 98.7 RD. General purpose I/O port pin Also serves as the write strobe for expanded bus operation. 98.7 RD. General purpose I/O port pin Also serves as the write strobe for expanded bus operation. 98.7 RD. General purpose I/O port pin Also serves as the write strobe for expanded bus operation. 98.7 RD. General purpose I/O port pin Also serves as the write strobe for expanded bus operation. 98.7 RD. General purpose I/O port pin Also serves as the write strobe for expanded bus operation. 98.7 RD. General purpose I/O port pin Also serves as the write strobe for expanded bus operation. 99.7 RD. General purpose I/O port pin Also serves as the write strobe for expanded bus operation. 99.7 RD. General purpose I/O port pin Also serves as the write strobe for expanded bus operation. 99.7 RD. General purpose I/O port pin Also serves as the write strobe for expanded bus operation. 99.7 RD. General purpose I/O port pin Also serves as the write strobe for expanded bus operation. 99.7 RD. General purpose I/O port pin Also serves as the write strobe for expanded bus operation. 99.		
This pin should NOT be connected directly to a PC COM port. P3.1 TXD. General purpose I/O port pin 3.1. Also serves as the transmit signal for the on board UART. This pin should NOT be connected directly to a PC COM port. P3.2 NTO. General purpose I/O port pin 3.2. Also serves as the active low External Interrupt 1. P3.3 TXT. General purpose I/O port pin 3.3. Also serves as the active low External Interrupt 1. P3.4 TXD. General purpose I/O port pin 3.4. Also serves as the Timer 0 input. P3.5 TX. General purpose I/O port pin 3.5. Also serves as the Timer 1 input. P3.5 TX. General purpose I/O port pin 3.5. Also serves as the Timer 1 input. P3.6 TX. General purpose I/O port pin 3.5. Also serves as the write strobe for expanded bus operation. P3.7 ND. General purpose I/O port pin Also serves as the read strobe for expanded bus operation. P3.7 ND. General purpose I/O port pin Also serves as the read strobe for expanded bus operation. P3.7 ND. General purpose I/O port pin Also serves as the read strobe for expanded bus operation. P3.7 ND. General purpose I/O port pin Also serves as the read strobe for expanded bus operation. P3.7 ND. General purpose I/O port pin Also serves as the read strobe for expanded bus operation. P3.7 ND. General purpose I/O port pin Also serves as the read strobe for expanded bus operation. P3.7 ND. General purpose I/O port pin Also serves as the read strobe for expanded bus operation. P3.7 ND. General purpose I/O port pin Also serves as the read strobe for expanded bus operation. P3.7 ND. General purpose I/O port pin Also serves as the read strobe for expanded bus operation. P3.7 ND. General purpose I/O port pin Also serves as the read strobe for expanded bus operation. P3.7 ND. General purpose I/O port pin Also serves as the read strobe for expanded bus operation. P3.7 ND. General purpose I/O port pin Also serves as the read strobe for expanded bus operation. P3.8 ND. This pin in purpose I/O port pin Also serves as I/O pin Also serves as I/O pin Also serves as I/O pin Al		
This pin should NOT be connected directly to a PC COM port. 93. NTI. General purpose I/O port pin 3.2. Also serves as the active low External Interrupt 0. 40 P3.3 NTI. General purpose I/O port pin 3.3. Also serves as the active low External Interrupt 1. 41 P3.4 TO. General purpose I/O port pin 3.4. Also serves as the Timer 0 input. 44 P3.5 TI. General purpose I/O port pin 3.4. Also serves as the Timer 1 input. 45 P3.6 WR. General purpose I/O port pin 3.5. Also serves as the write strobe for expanded bus operation. 46 P3.7 RD. General purpose I/O port pin. Also serves as the write strobe for expanded bus operation. 58 FSEN - Program Store Enable. This active low signal is used to enable an external program memory when using the expanded bus. It is normally an output and should be unconnected if not used. PSEN also is used to invoke the Bootstrap Loader. At this time, PSEN will be pulled down externally. This should only be done once the DS5001FP is already in a reset state. The device that pulls down should be open drain since it must not interfere with PSEN under normal operation. 46 RST - Active high reset input. A logic 1 applied to this pin will activate a reset state. This pin is pulled down internally so this pin can be left unconnected if not used. An RC power-on reset circuit is not needed and is NOT recommended. 47 ALE - Address Latch Enable. Used to de-multiplex the multiplexed expanded address/data bus on Port 0. This pin is normally operanded. 47 ALE - Address Latch Enable. Used to de-multiplex the multiplexed expanded address/data bus on Port 0. This pin is normally operanded. 47 ALE - Address Latch Enable. Used to de-multiplex the multiplexed expanded address/data bus on Port 0. This pin is normally operanded address/data bus on Port 0. This pin is normally operanded address/data bus on Port 0. This pin is normally operanded address/data bus on Port 0. This pin is normally operanded address/data bus on Port 0. This pin is normally operanded address/data bus on Port 0. Port 0. Port 0. Por	30	This pin should <u>NOT</u> be connected directly to a PC COM port.
 P3.2 INTO . General purpose I/O port pin 3.2. Also serves as the active low External Interrupt 0. P3.3 INTI . General purpose I/O port pin 3.3. Also serves as the active low External Interrupt 1. P3.4 TO. General purpose I/O port pin 3.4. Also serves as the active low External Interrupt 1. P3.6 WR . General purpose I/O port pin 3.5. Also serves as the Timer 0 input. P3.6 WR . General purpose I/O port pin . Also serves as the Timer 1 input. P3.7 RD . General purpose I/O port pin . Also serves as the read strobe for expanded bus operation. P8.FN - Program Store Enable. This active low signal is used to enable an external program memory when using the expanded bus. It is normally an output and should be unconnected if not used. PSEN also is used to invoke the Bootstrap Loader. At this time, PSEN will be pulled down externally. This should only be done once the DS5001FP is already in a reset state. The device that pulls down should be open drain since it must not interfere with PSEN under normal operation. RST - Active high reset input. A logic 1 applied to this pin will activate a reset state. This pin is pulled down internally so this pin can be left unconnected if not used. An RC power-on reset circuit is not needed and is NOT recommended. ALF - Address Latch Enable. Used to de-multiplex the multiplexed expanded address/data bus on Port 0. This pin is normally connected to the clock input on a '373 type transparent latch. XTAL2, XTAL1. Used to connect an external crystal to the internal oscillator. XTAL1 is the input to an inverting amplifier and XTAL2 is the output. GND - Logic ground. V_{CC} - V_{CC} Output. This is switched between V_{Cc} and V_{L1} by internal circuits based on the level of V _{CC}. When power is above the lithium input, power will be drawn from V _{Cc}. The lithium cell ernamias isolated from a load. When V_{Cc} is below V_{1,1} the V_{Cc} switc	38	
40 P3.3 INT . General purpose I/O port pin 3.3. Also serves as the active low External Interrupt 1. 41 P3.4 T0. General purpose I/O port pin 3.4. Also serves as the Timer 0 input. 44 P3.5 T1. General purpose I/O port pin 3.5. Also serves as the Timer 1 input. 45 P3.6 WR . General purpose I/O port pin . Also serves as the write strobe for expanded bus operation. 46 P3.7 RD . General purpose I/O port pin . Also serves as the read strobe for expanded bus operation. 68 PSEN - Program Store Enable. This active low signal is used to enable an external program memory when using the expanded bus. It is normally an output and should be unconnected if not used. PSEN also is used to invoke the Bootstrap Loader. At this time, PSEN will be pulled down sternally. This should only be done once the DS501FP is already in a reset state. The device that pulls down should be open drain since it must not interfere with PSEN under normal operation. 47 RST - Active high reset input. A logic 1 applied to this pin will activate a reset state. This pin is pulled down internally so this pin can be left unconnected if not used. An RC power-on reset circuit is not needed and is NOT recommended. 48 RST - Active high reset input. A logic 1 applied to this pin will activate a reset state. This pin is pulled down internally so this pin can be left unconnected if not used. An RC power-on reset circuit is not needed and is NOT recommended. 49 ALE - Address Latch Enable. Used to de-multiplex the multiplexed expanded address/data bus on Port 0. This pin is normally connected to the clock input on a '373 type transparent latch. 41 ALE - Address Latch Enable. Used to connect an external crystal to the internal oscillator. XTAL1 is the input to an inverting amplifier and XTAL2 is the output. 52 GND - Logic ground. 13 V _{CC} +5V V _{CC} o V _{CC} Output. This is switched between V _{CC} and V _{LI} by internal circuits based on the level of V _{CC} . When power is above the lithium input, power will be drawn from V _{CC} . The lithium cell remains isolated	39	
41 P3.5 T1. General purpose I/O port pin 3.4. Also serves as the Timer 0 input. 44 P3.5 T1. General purpose I/O port pin 3.5. Also serves as the Timer 1 input. 45 P3.6 W. General purpose I/O port pin. Also serves as the write strobe for expanded bus operation. 46 P3.7 RD. General purpose I/O port pin. Also serves as the reat strobe for expanded bus operation. 46 P3.7 RD. General purpose I/O port pin. Also serves as the read strobe for expanded bus operation. 46 P3.7 RD. General purpose I/O port pin. Also serves as the read strobe for expanded bus operation. 46 P3.7 RD. General purpose I/O port pin. Also serves as the read strobe for expanded bus operation. 46 P3.7 RD. General purpose I/O port pin. Also serves as the read strobe for expanded bus operation. 46 P3.7 RD. General purpose I/O port pin. Also serves as the read strobe for expanded bus operation. 47 RD F3.6 RD. Also serves as the read strobe for expanded bus operation. 48 RD F3.6 RD. Also serves as the read strobe for expanded bus operation. 49 RD F3.6 RD. Also serves as the read strobe for expanded bus operation. 49 RD F3.6 RD. Also serves as the rineal strobe for expanded bus operation. 40 RD F3.6 RD. Also serves as the rineal strobe for expanded bus operation. 40 RD F3.6 RD. Also serves as the rineal strobe for expanded bus operation. 41 RD F3.6 RD. Also serves as the rineal strobe for expanded bus operation. 42 RD F3.6 RD. Also serves as the read strobe for expanded bus operation. 43 RD F3.6 RD. Also serves as the read strobe for expanded bus operation. 44 RD F3.6 RD F3	40	
 P3.5 T1. General purpose I/O port pin 3.5. Also serves as the Timer I input. P3.6 WR. General purpose I/O port pin. Also serves as the write strobe for expanded bus operation. P3.7 RD. General purpose I/O port pin. Also serves as the read strobe for expanded bus operation. FSEN - Program Store Enable. This active low signal is used to enable an external program memory when using the expanded bus. It is normally an output and should be unconnected if not used. PSEN also is used to invoke the Bosotistrap Loader. At this time, PSEN will be pulled down externally. This should only be done once the DSS001PP is already in a reset state. The device that pulls down should be open drain since it must not interfere with PSEN under normal operation. RST - Active high reset input. A logic 1 applied to this pin will activate a reset state. This pin is pulled down internally so this pin can be left unconnected if not used. An RC power-on reset circuit is not needed and is NOT recommended. ALE - Address Latch Enable. Used to de-multiplex the multiplexed expanded address/data bus on Port 0. This pin is normally connected to the clock input on a '373 type transparent latch. YCC - VCC Output. This is the output. GND - Logic ground. VCC - VCC Output. This is switched between VCC and VL1 by internal circuits based on the level of VCC. When power is above the lithium input, power will be drawn from VCC. The lithium cell remains isolated from a load. When VCC is below VL1, the VCCO switches to the VL1 source. VCCO should be connected to the VCC pin of an SRAM. VL1 - Lithium Voltage Input. Connect to a lithium cell greater than VLImin and no greater than VLImin as shown in the electrical specifications. Nominal value is +3V. BA14 - Ob. Byte-wide Data bus bits 7-O. This Bib this directional bus is combined with the non-multiplexed address bus (BA14-0) to access NV SRAM. Decoding is performed u	41	
P3.6 WR . General purpose I/O port pin. Also serves as the write strobe for expanded bus operation. P3.7 RD . General purpose I/O port pin. Also serves as the read strobe for expanded bus operation. PSEN - Program Store Enable. This active low signal is used to enable an external program memory when using the expanded bus. It is normally an output and should be unconnected if not used. PSEN also is used to invoke the Bootstrap Loader. At this time, PSEN will be pulled down externally. This should only be done once the DSS001FP is already in a reset state. The device that pulls down should be open drain since it must not interfere with PSEN under normal operation. RST - Active high reset input. A logic 1 applied to this pin will activate a reset state. This pin is pulled down internally so this pin can be left unconnected if not used. An RC power-on reset circuit is not needed and is NOT recommended. ALE - Address Latch Enable. Used to de-multiplex the multiplexed expanded address/data bus on Port 0. This pin is normally connected to the clock input on a '373 type transparent latch. XTAL2, XTAL1. Used to connect an external crystal to the internal oscillator. XTAL1 is the input to an inverting amplifier and XTAL2 is the output. GND - Logic ground.		
P3.7 RD. General purpose I/O port pin. Also serves as the read strobe for expanded bus operation. P8EN - Program Store Enable. This active low signal is used to enable an external program memory when using the expanded bus. It is normally an output and should be unconnected if not used. PSEN also is used to invoke the Bootstrap Loader. At this time, PSEN will be pulled down externally. This should only be done once the DS5001FP is already in a reset state. The device that pulls down should be open drain since it must not interfere with PSEN under normal operation. RST - Active high reset input. A logic 1 applied to this pin will activate a reset state. This pin is pulled down internally so this pin can be left unconnected if not used. An RC power-on reset circuit is not needed and is NOT recommended. ALE - Address Latch Enable. Used to de-multiplex the multiplexed expanded address/data bus on Port 0. This pin is normally connected to the clock input on a '373 type transparent latch. XTAL2, XTAL1. Used to connect an external crystal to the internal oscillator. XTAL1 is the input to an inverting amplifier and XTAL2 is the output. SQUEDITY - VCCO - VCC Output. This is switched between VCC and VL1 by internal circuits based on the level of VCC When power is above the lithium input, power will be drawn from V CC. The lithium cell remains isolated from a load. When V CC is below VL1, the VCCO switches to the VL1 source. VCCO should be connected to the VCC pin of an SRAM. SQL - VCC - VCC Output. Connect to a lithium cell greater than VL1min and no greater than VL1min as shown in the electrical specifications. Norminal value is +3V. SQL - VCC - SQL		
PSEN - Program Store Enable. This active low signal is used to enable an external program memory when using the expanded bus. It is normally an output and should be unconnected if not used. PSEN also is used to invoke the Bootstrap Loader. At this time, PSEN will be pulled down externally. This should only be done once the DS5001FP is already in a reset state. The device that pulls down should be open drain since it must not interfere with PSEN under normal operation. RST - Active high reset input. A logic 1 applied to this pin will activate a reset state. This pin is pulled down internally so this pin can be left unconnected if not used. An RC power-on reset circuit is not needed and is NOT recommended. ALE - Address Latch Enable. Used to de-multiplex the multiplexed expanded address/data bus on Port 0. This pin is normally connected to the clock input on a '373 type transparent latch. XTAL2, XTAL1. Used to connect an external crystal to the internal oscillator. XTAL1 is the input to an inverting amplifier and XTAL2 is the output. GND - Logic ground. Vcc - +5V Vcc - Vcc Output. This is switched between Vcc and Vul by internal circuits based on the level of V cc. When power is above the lithium input, power will be drawn from V cc. The lithium cell remains isolated from a load. When Vcc is below Vil, the Vcco switches to the Vil source. Vcco should be connected to the Vcc pin of an SRAM. Vii - Lithium Voltage Input. Connect to a lithium cell greater than Vilma and no greater than Vilma as shown in the electrical specifications. Nominal value is +3V. BA14 - 0. Byte-wide Address bus bits 14-0. This bus is combined with the non-multiplexed data bus (BD7-0) to access NV SRAM. Decoding is performed using CEI through CE4. Therefore, BA15 is not actually needed. Read/write access is controlled by R/w - Read/Write. This signal provides the write enable to the SRAMs on the byte-wide bus. It is controlled by the memory map and partition. The blocks selected as program (ROM) will be write-protected. CEI - Chip E	46	
using the expanded bus. It is normally an output and should be unconnected if not used. PSEN also is used to invoke the Bootstrap Loader. At this time, PSEN will be pulled down externally. This should only be done once the DS5001FP is already in a reset state. The device that pulls down should be open drain since it must not interfere with PSEN under normal operation. RST - Active high reset input. A logic 1 applied to this pin will activate a reset state. This pin is pulled down internally so this pin can be left unconnected if not used. An RC power-on reset circuit is not needed and is MOT recommended. ALE - Address Latch Enable. Used to de-multiplex the multiplexed expanded address/data bus on Port 0. This pin is normally connected to the clock input on a '373 type transparent latch. XTAL2.XTAL1. Used to connect an external crystal to the internal oscillator. XTAL1 is the input to an inverting amplifier and XTAL2 is the output. GND - Logic ground. Vcc - +5V Vcco - Vcc Output. This is switched between Vcc and V _{LI} by internal circuits based on the level of V cc. When power is above the lithium input, power will be drawn from V cc. The lithium cell remains isolated from a load. When Vcc is below V _{LI} , the Vcco switches to the V _{LI} source. Vcco should be connected to the Vcc pin of an SRAM. V _{LI} - Lithium Voltage Input. Connect to a lithium cell greater than V _{LImax} and no greater than V _{LImax} as shown in the electrical specifications. Nominal value is +3V. S3, 16, 8, 18, 80, 76, 4, 6, 28, 30, 33, 35, 37 BA14 - 0. Byte-wide Address bus bits 14-0. This bus is combined with the non-multiplexed data bus (BD7-0) to access NV SRAM. Decoding is performed using CE1 through CE4. Therefore, BA15 is not actually needed. Read/write access is controlled by R/W. BA14-0 connected using CE3 and CE5. Read/write access is controlled by R/W. BD7-0 connect directly to an SRAM, and optionally to a real-time clock or other peripheral. R/W - Read/Write. This signal provides the write enable to the SRAMs on the byte-w		
to invoke the Bootstrap Loader. At this time, PSEN will be pulled down externally. This should only be done once the DS5001PF is already in a reset state. The device that pulls down should be open drain since it must not interfere with PSEN under normal operation. RST - Active high reset input. A logic 1 applied to this pin will activate a reset state. This pin is pulled down internally so this pin can be left unconnected if not used. An RC power-on reset circuit is not needed and is NOT recommended. ALE - Address Latch Enable. Used to de-multiplex the multiplexed expanded address/data bus on Port 0. This pin is normally connected to the clock input on a '373 type transparent latch. XTAL1, XTAL1. Used to connect an external crystal to the internal oscillator. XTAL1 is the input to an inverting amplifier and XTAL2 is the output. 52 GND - Logic ground. 13 V _{CC} - +5V Weco - V _{CC} Output. This is switched between V _{CC} and V _{LI} by internal circuits based on the level of V _{CC} . When power is above the lithium input, power will be drawn from V _{CC} . The lithium cell remains isolated from a load. When V _{CC} is below V _{LI} , the V _{CCO} switches to the V _{LI} source. V _{CCO} should be connected to the V _{CC} pin of an SRAM. 53, 16, 8, 18, 80, 76, 4, 6, 18, 184 4.0. Byte-wide Address bus bits 14-0. This bus is combined with the non-multiplexed data bus shown in the electrical specifications. Nominal value is +3V. BA14 - 0. Byte-wide Address bus bits 14-0. This bus is combined with the non-multiplexed data bus actually needed. Read/write access is controlled by R/ w. BA14-0 connect directly to an 8k, 32k, or 128k SRAM. If an 8k RAM is used, BA13 and BA14 will be unconnected. If a 128k SRAM is used, the micro converts CE2 and CE3 to serve as A16 and A15 respectively. BD7 - 0. Byte-wide Data bus bits 7-0. This 8-bit bi-directional bus is combined with the non-multiplexed address bus (BA14-0) to access NV SRAM. Decoding is performed on CE1 and CE2. Read/write access is controlled by R/ w. Pead/write. This signal provid		
done once the DS5001FP is already in a reset state. The device that pulls down should be open drain since it must not interfere with PSEN under normal operation. RST - Active high reset input. A logic 1 applied to this pin will activate a reset state. This pin is pulled down internally so this pin can be left unconnected if not used. An RC power-on reset circuit is not needed and is NOT recommended. ALE - Address Latch Enable. Used to de-multiplex the multiplexed expanded address/data bus on Port 0. This pin is normally connected to the clock input on a '373 type transparent latch. XTAL2, XTAL1. Used to connect an external crystal to the internal oscillator. XTAL1 is the input to an inverting amplifier and XTAL2 is the output. 52 GND - Logic ground. 74 V _{CCO} - V _{CC} Output. This is switched between V _{CC} and V _{LI} by internal circuits based on the level of V _{CC} When power is above the lithium input, power will be drawn from V _{CC} . The lithium cell remains isolated from a load. When V _{CC} is below V _{LI} , the V _{CCO} switches to the V _{LI} source. V _{CCO} should be connected to the V _{CC} pin of an SRAM. 53, 16, 8, 18, 80, 76, 4, 6, 20, 24, 26, 28, 30, 33, 35, 37 BA14 - 0. Byte-wide Address bus bits 14-0. This bus is combined with the non-multiplexed data bus (BD7-0) to access NV SRAM. Decoding is performed using ŒEI through Œ£1. Therefore, BA15 is not actually needed. Read/write access is controlled by R/ W̄. BA14-0 connect directly to an 8k, 32k, or 128k SRAM. If an 8k RAM is used, BA13 and BA14 will be unconnected. If a 128k SRAM is used, the micro converts Œ£2 and Œ3 to serve as A16 and A15 respectively. 71, 69, 67, 65, 61, 59, 57, 55 61, 59, 57, 55 BD7 - 0. Byte-wide Data bus bits 7-0. This 8-bit bi-directional bus is combined with the non-multiplexed address bus (BA14-0) to access NV SRAM. Decoding is performed on ŒE1 and Œ£2. Read/write access is controlled by R/ w̄. BB7-0 connect directly to an SRAM, and optionally to a real-time clock or other peripheral. RV w̄ - Read/Write. This signal provi		
RST - Active high reset input. A logic 1 applied to this pin will activate a reset state. This pin is pulled down internally so this pin can be left unconnected if not used. An RC power-on reset circuit is not needed and is NOT recommended. ALE - Address Latch Enable. Used to de-multiplex the multiplexed expanded address/data bus on Port 0. This pin is normally connected to the clock input on a '373 type transparent latch. XTAL1. Used to connect an external crystal to the internal oscillator. XTAL1 is the input to an inverting amplifier and XTAL2 is the output. S2		
RST - Active high reset input. A logic 1 applied to this pin will activate a reset state. This pin is pulled down internally so this pin can be left unconnected if not used. An RC power-on reset circuit is not needed and is NOT recommended. ALE - Address Latch Enable. Used to de-multiplex the multiplexed expanded address/data bus on Port 0. This pin is normally connected to the clock input on a '373 type transparent latch. XTAL2, XTAL1. Used to connect an external crystal to the internal oscillator. XTAL1 is the input to an inverting amplifier and XTAL2 is the output. 52 GND - Logic ground. 13 V _{CC} - +5V 12 V _{CCO} - V _{CC} Output. This is switched between V _{CC} and V _{LI} by internal circuits based on the level of V _{CC} When power is above the lithium input, power will be drawn from V _{CC} . The lithium cell remains isolated from a load. When V _{CC} is below V _{LI} , the V _{CCO} switches to the V _{LI} source. V _{CCO} should be connected to the V _{CC} pin of an SRAM. 53, 16, 8, 18, 80, 76, 4, 6, 6, 70, 64, 6, 60, 20, 24, 26, 28, 30, 33, 35, 37 BA14 - 0. Byte-wide Address bus bits 14-0. This bus is combined with the non-multiplexed data bus (BD7-0) to access NV SRAM. Decoding is performed using CEI through CEI. Therefore, BA15 is not actually needed. Read/write access is controlled by R/ w. BA14-0 connect directly to an 8k, 32k, or 128k SRAM. If an 8k RAM is used, BA13 and BA14 will be unconnected. If a 128k SRAM is used, the micro converts CE2 and CE3 to serve as A16 and A15 respectively. 71, 69, 67, 65, 61, 59, 57, 55 BD7 - 0. Byte-wide Data bus bits 7-0. This 8-bit bi-directional bus is combined with the non-multiplexed address bus (BA14-0) to access NV SRAM. Decoding is performed on CEI and CE2. Read/write access is controlled by R/ w. BD7-0 connect directly to an SRAM, and optionally to a real-time clock or other peripheral. R/w - Read/Write. This signal provides the write enable to the SRAMs on the byte-wide bus. It connects to the chip enable input of one SRAM. CEI is lithium-backed. It will remain in		*
down internally so this pin can be left unconnected if not used. An RC power-on reset circuit is not needed and is NOT recommended. ALE - Address Latch Enable. Used to de-multiplex the multiplexed expanded address/data bus on Port 0. This pin is normally connected to the clock input on a '373 type transparent latch. XTAL2, XTAL1. Used to connect an external crystal to the internal oscillator. XTAL1 is the input to an inverting amplifier and XTAL2 is the output. 52 GND - Logic ground. 13 V _{CC} - +5V 12 V _{CCO} - V _{CC} Output. This is switched between V _{CC} and V _{LI} by internal circuits based on the level of V _{CC} When power is above the lithium input, power will be drawn from V _{CC} . The lithium cell remains isolated from a load. When V _{CC} is below V _{LI} , the V _{CCO} switches to the V _{LI} source. V _{CCO} should be connected to the V _{CC} pin of an SRAM. 54 V _{LI} - Lithium Voltage Input. Connect to a lithium cell greater than V _{LImin} and no greater than V _{LImin} as shown in the electrical specifications. Nominal value is +3V. 53, 16, 8, 18, 80, 76, 4, 6, 20, 24, 26, 28, 30, 33, 35, 37 BA14 - 0. Byte-wide Address bus bits 14-0. This bus is combined with the non-multiplexed data bus (BD7-0) to access NV SRAM. Decoding is performed using ŒI through ŒI4. Therefore, BA15 is not actually needed. Read/write access is controlled by R/ \overline{w}. BA14-0 connect directly to an 8k, 32k, or 12k SRAM. If an 8k RAM is used, BA13 and BA14 will be unconnected. If a 128k SRAM is used, the micro converts ŒI2 and ŒI3 to serve as A16 and A15 respectively. 71, 69, 67, 65, 61, 69, 67, 65, 61, 69, 67, 65, 61, 59, 57, 55 BD7 - 0. Byte-wide Data bus bits 7-0. This 8-bit bi-directional bus is combined with the non-multiplexed address bus (BA14-0) to access NV SRAM. Decoding is performed on ŒI1 and ŒI2. Read/write access is controlled by the memory map and partition. The blocks selected as program (ROM) will be write-protected. 74 ŒI - Chip Enable 1. This is the primary decoded chip enable for memory access on the byte-wide bus		
and is NOT recommended. ALE - Address Latch Enable. Used to de-multiplex the multiplexed expanded address/data bus on Port 0. This pin is normally connected to the clock input on a '373 type transparent latch. XTAL2, XTAL1. Used to connect an external crystal to the internal oscillator. XTAL1 is the input to an inverting amplifier and XTAL2 is the output. GND - Logic ground. Vcc +5V Vcc +5V Vcc - VCc Output. This is switched between Vcc and V _{L1} by internal circuits based on the level of V cc. When power is above the lithium input, power will be drawn from V cc. The lithium cell remains isolated from a load. When V cc is below V _{L1} , the V _{CCO} switches to the V _{L1} source. V _{CCO} should be connected to the V _{CC} pin of an SRAM. V _{L1} - Lithium Voltage Input. Connect to a lithium cell greater than V _{L1min} and no greater than V _{L1min} as shown in the electrical specifications. Nominal value is +3V. S3, 16, 8, 18, 80, 76, 4, 6, (BD7-0) to access NV SRAM. Decoding is performed using CEI through CE4. Therefore, BA15 is not accurately needed. Read/write access is controlled by R/ w . BA14-0 connect directly to an 8k, 32k, or 128k SRAM. If an 8k RAM is used, BA13 and BA14 will be unconnected. If a 128k SRAM is used, the micro converts CE2 and CE3 to serve as A16 and A15 respectively. BD7 - 0. Byte-wide Data bus bits 7-0. This 8-bit bi-directional bus is combined with the non-multiplexed address bus (BA14-0) to access NV SRAM. Decoding is performed on CE1 and CE2. Read/write access is controlled by R/ w . BD7-0 connect directly to an SRAM, and optionally to a real-time clock or other peripheral. R/w̄ - Read/Write. This signal provides the write enable to the SRAMs on the byte-wide bus. It is controlled by the memory map and partition. The blocks selected as program (ROM) will be write-protected. CEI - Chip Enable 1. This is the primary decoded chip enable for memory access on the byte-wide bus. It connects to the chip enable input of one SRAM. CE1 is lithium-backed. It will remain in a logic high inactiv	34	
ALE - Address Latch Enable. Used to de-multiplex the multiplexed expanded address/data bus on Port 0. This pin is normally connected to the clock input on a '373 type transparent latch. XTAL2, XTAL1. Used to connect an external crystal to the internal oscillator. XTAL1 is the input to an inverting amplifier and XTAL2 is the output. 52 GND - Logic ground. 13 V _{CC} · +5V 14 V _{CCO} - V _{CC} Output. This is switched between V _{CC} and V _{LI} by internal circuits based on the level of V _{CC} When power is above the lithium input, power will be drawn from V _{CC} . The lithium cell remains isolated from a load. When V _{CC} is below V _{LI} , the V _{CCO} switches to the V _{LI} source. V _{CCO} should be connected to the V _{CC} pin of an SRAM. 54 V _{LI} - Lithium Voltage Input. Connect to a lithium cell greater than V _{LImin} and no greater than V _{LImin} as shown in the electrical specifications. Nominal value is +3V. 53, 16, 8, 18, 80, 76, 4, 6, (BD7-0) to access NV SRAM. Decoding is performed using CE1 through CE4. Therefore, BA15 is not actually needed. Read/write access is controlled by R/ w̄. BA14-0 connect directly to an 8k, 32k, or 128k SRAM. If an 8k RAM is used, BA13 and BA14 will be unconnected. If a 128k SRAM is used, the micro converts CE2 and CE3 to serve as A16 and A15 respectively. 71, 69, 67, 65, BD7 - 0. Byte-wide Data bus bits 7-0. This 8-bit bi-directional bus is combined with the non-multiplexed address bus (BA14-0) to access NV SRAM. Decoding is performed on CE1 and CE2. Read/write access is controlled by R/ w̄. BD7-0 connect directly to an SRAM, and optionally to a real-time clock or other peripheral. R/w̄ - Read/Write. This signal provides the write enable to the SRAMs on the byte-wide bus. It is controlled by the memory map and partition. The blocks selected as program (ROM) will be write-protected. CE1 - Chip Enable 1. This is the primary decoded chip enable for memory access on the byte-wide bus. It connects to the chip enable input of one SRAM. CE1 is lithium-backed. It will remain in a logic high ina		
This pin is normally connected to the clock input on a '373 type transparent latch. XTAL2, XTAL1. Used to connect an external crystal to the internal oscillator. XTAL1 is the input to an inverting amplifier and XTAL2 is the output. 52		
TAL2, XTAL1. Used to connect an external crystal to the internal oscillator. XTAL1 is the input to an inverting amplifier and XTAL2 is the output. Some	70	
inverting amplifier and XTAL2 is the output. Solid Content of the protected.	1= 10	
13	47, 48	
13 V _{CC} - +5V 12 V _{CCO} - V _{CC} Output. This is switched between V _{CC} and V _{LI} by internal circuits based on the level of V _{CC} . When power is above the lithium input, power will be drawn from V _{CC} . The lithium cell remains isolated from a load. When V _{CC} is below V _{LI} , the V _{CCO} switches to the V _{LI} source. V _{CCO} should be connected to the V _{CC} pin of an SRAM. 54 V _{LI} - Lithium Voltage Input. Connect to a lithium cell greater than V _{LImin} and no greater than V _{LImix} as shown in the electrical specifications. Nominal value is +3V. 53, 16, 8, 18, 80, 76, 4, 6, 20, 24, 26, 28, 30, 33, 35, 37 BA14 - 0. Byte-wide Address bus bits 14-0. This bus is combined with the non-multiplexed data bus (BD7-0) to access NV SRAM. Decoding is performed using CE1 through CE4. Therefore, BA15 is not actually needed. Read/write access is controlled by R/ w̄. BA14-0 connect directly to an 8k, 32k, or 128k SRAM. If an 8k RAM is used, BA13 and BA14 will be unconnected. If a 128k SRAM is used, the micro converts CE2 and CE3 to serve as A16 and A15 respectively. 71, 69, 67, 65, 61, 59, 57, 55 BD7 - 0. Byte-wide Data bus bits 7-0. This 8-bit bi-directional bus is combined with the non-multiplexed address bus (BA14-0) to access NV SRAM. Decoding is performed on CE1 and CE2. Read/write access is controlled by R/ w̄. BD7-0 connect directly to an SRAM, and optionally to a real-time clock or other peripheral. R/w̄ - Read/Write. This signal provides the write enable to the SRAMs on the byte-wide bus. It is controlled by the memory map and partition. The blocks selected as program (ROM) will be write-protected. 74 CE1 - Chip Enable 1. This is the primary decoded chip enable for memory access on the byte-wide bus. It connects to the chip enable input of one SRAM. CE1 is lithium-backed. It will remain in a logic high inactive state when V _{CC} falls below V _{LI} .	50	
12 V _{CCO} - V _{CC} Output. This is switched between V _{CC} and V _{LI} by internal circuits based on the level of V _{CC} . When power is above the lithium input, power will be drawn from V _{CC} . The lithium cell remains isolated from a load. When V _{CC} is below V _{LI} , the V _{CCO} switches to the V _{LI} source. V _{CCO} should be connected to the V _{CC} pin of an SRAM. 54 V _{LI} - Lithium Voltage Input. Connect to a lithium cell greater than V _{LImin} and no greater than V _{LImix} as shown in the electrical specifications. Nominal value is +3V. 53, 16, 8, 18, 80, 76, 4, 6, 20, 24, 26, 28, 30, 33, 35, 37 BA14 - 0. Byte-wide Address bus bits 14-0. This bus is combined with the non-multiplexed data bus (BD7-0) to access NV SRAM. Decoding is performed using CEI through CE4. Therefore, BA15 is not actually needed. Read/write access is controlled by R/ w̄. BA14-0 connect directly to an 8k, 32k, or 128k SRAM. If an 8k RAM is used, BA13 and BA14 will be unconnected. If a 128k SRAM is used, the micro converts CE2 and CE3 to serve as A16 and A15 respectively. BD7 - 0. Byte-wide Data bus bits 7-0. This 8-bit bi-directional bus is combined with the non-multiplexed address bus (BA14-0) to access NV SRAM. Decoding is performed on CE1 and CE2. Read/write access is controlled by R/ w̄. BD7-0 connect directly to an SRAM, and optionally to a real-time clock or other peripheral. R/w̄ - Read/Write. This signal provides the write enable to the SRAMs on the byte-wide bus. It is controlled by the memory map and partition. The blocks selected as program (ROM) will be write-protected. R4 CE1 - Chip Enable 1. This is the primary decoded chip enable for memory access on the byte-wide bus. It connects to the chip enable input of one SRAM. CE1 is lithium-backed. It will remain in a logic high inactive state when V _{CC} falls below V _{LI} .		
When power is above the lithium input, power will be drawn from V CC. The lithium cell remains isolated from a load. When V CC is below VLI, the VCCO switches to the VLI source. VCCO should be connected to the VCC pin of an SRAM. VLI - Lithium Voltage Input. Connect to a lithium cell greater than VLImin and no greater than VLImin as shown in the electrical specifications. Nominal value is +3V. 53, 16, 8, 18, 80, 76, 4, 6, (BD7-0) to access NV SRAM. Decoding is performed using CEI through CE4. Therefore, BA15 is not actually needed. Read/write access is controlled by R/W. BA14-0 connect directly to an 8k, 32k, or 128k SRAM. If an 8k RAM is used, BA13 and BA14 will be unconnected. If a 128k SRAM is used, the micro converts CE2 and CE3 to serve as A16 and A15 respectively. 71, 69, 67, 65, 61, 59, 57, 55 BD7 - 0. Byte-wide Data bus bits 7-0. This 8-bit bi-directional bus is combined with the non-multiplexed address bus (BA14-0) to access NV SRAM. Decoding is performed on CEI and CE2. Read/write access is controlled by R/W. BD7-0 connect directly to an SRAM, and optionally to a real-time clock or other peripheral. R/W - Read/Write. This signal provides the write enable to the SRAMs on the byte-wide bus. It is controlled by the memory map and partition. The blocks selected as program (ROM) will be write-protected. CEI - Chip Enable 1. This is the primary decoded chip enable for memory access on the byte-wide bus. It connects to the chip enable input of one SRAM. CEI is lithium-backed. It will remain in a logic high inactive state when V CC falls below V LI.		
V _{CC} pin of an SRAM. V _{LI} - Lithium Voltage Input. Connect to a lithium cell greater than V _{LImin} and no greater than V _{LImin} as shown in the electrical specifications. Nominal value is +3V. 53, 16, 8, 18, 80, 76, 4, 6, (BD7-0) to access NV SRAM. Decoding is performed using CEI through CE4. Therefore, BA15 is not actually needed. Read/write access is controlled by R/ w. BA14-0 connect directly to an 8k, 32k, or 128k SRAM. If an 8k RAM is used, BA13 and BA14 will be unconnected. If a 128k SRAM is used, the micro converts CE2 and CE3 to serve as A16 and A15 respectively. 71, 69, 67, 65, 61, 59, 57, 55 BD7 - 0. Byte-wide Data bus bits 7-0. This 8-bit bi-directional bus is combined with the non-multiplexed address bus (BA14-0) to access NV SRAM. Decoding is performed on CE1 and CE2. Read/write access is controlled by R/w. BD7-0 connect directly to an SRAM, and optionally to a real-time clock or other peripheral. R/w - Read/Write. This signal provides the write enable to the SRAMs on the byte-wide bus. It is controlled by the memory map and partition. The blocks selected as program (ROM) will be write-protected. R/W - CEI - Chip Enable 1. This is the primary decoded chip enable for memory access on the byte-wide bus. It connects to the chip enable input of one SRAM. CEI is lithium-backed. It will remain in a logic high inactive state when V _{CC} falls below V _{LI} .	12	When power is above the lithium input, power will be drawn from V _{CC} . The lithium cell remains isolated
54		
shown in the electrical specifications. Nominal value is +3V. 53, 16, 8, 18, 80, 76, 4, 6, 20, 24, 26, 28, 30, 33, 35, 37 8AM. If an 8k RAM is used, BA13 and BA14 will be unconnected. If a 128k SRAM is used, the micro converts CE2 and CE3 to serve as A16 and A15 respectively. 71, 69, 67, 65, 61, 59, 57, 55 8B7 - 0. Byte-wide Data bus bits 7-0. This 8-bit bi-directional bus is combined with the non-multiplexed address bus (BA14-0) to access NV SRAM. Decoding is performed on CE1 and CE2. Read/write access is controlled by R/W. BD7-0 connect directly to an SRAM, and optionally to a real-time clock or other peripheral. R/W - Read/Write. This signal provides the write enable to the SRAMs on the byte-wide bus. It is controlled by the memory map and partition. The blocks selected as program (ROM) will be write-protected. 74 CE1 - Chip Enable 1. This is the primary decoded chip enable for memory access on the byte-wide bus. It connects to the chip enable input of one SRAM. CE1 is lithium-backed. It will remain in a logic high inactive state when V _{CC} falls below V _{LI} .	5.4	
BA14 - 0. Byte-wide Address bus bits 14-0. This bus is combined with the non-multiplexed data bus (BD7-0) to access NV SRAM. Decoding is performed using CE1 through CE4. Therefore, BA15 is not actually needed. Read/write access is controlled by R/ w. BA14-0 connect directly to an 8k, 32k, or 128k SRAM. If an 8k RAM is used, BA13 and BA14 will be unconnected. If a 128k SRAM is used, the micro converts CE2 and CE3 to serve as A16 and A15 respectively. 71, 69, 67, 65, 61, 59, 57, 55 BD7 - 0. Byte-wide Data bus bits 7-0. This 8-bit bi-directional bus is combined with the non-multiplexed address bus (BA14-0) to access NV SRAM. Decoding is performed on CE1 and CE2. Read/write access is controlled by R/w. BD7-0 connect directly to an SRAM, and optionally to a real-time clock or other peripheral. R/w - Read/Write. This signal provides the write enable to the SRAMs on the byte-wide bus. It is controlled by the memory map and partition. The blocks selected as program (ROM) will be write-protected. R/E1 - Chip Enable 1. This is the primary decoded chip enable for memory access on the byte-wide bus. It connects to the chip enable input of one SRAM. CE1 is lithium-backed. It will remain in a logic high inactive state when V _{CC} falls below V _{LI} .	34	
80, 76, 4, 6, 20, 24, 26, 28, 30, 33, 35, 37 (BD7-0) to access NV SRAM. Decoding is performed using CEI through CE4. Therefore, BA15 is not actually needed. Read/write access is controlled by R/ w. BA14-0 connect directly to an 8k, 32k, or 128k SRAM. If an 8k RAM is used, BA13 and BA14 will be unconnected. If a 128k SRAM is used, the micro converts CE2 and CE3 to serve as A16 and A15 respectively. 71, 69, 67, 65, 61, 59, 57, 55 BD7 - 0. Byte-wide Data bus bits 7-0. This 8-bit bi-directional bus is combined with the non-multiplexed address bus (BA14-0) to access NV SRAM. Decoding is performed on CE1 and CE2. Read/write access is controlled by R/w. BD7-0 connect directly to an SRAM, and optionally to a real-time clock or other peripheral. R/w - Read/Write. This signal provides the write enable to the SRAMs on the byte-wide bus. It is controlled by the memory map and partition. The blocks selected as program (ROM) will be write-protected. CEI - Chip Enable 1. This is the primary decoded chip enable for memory access on the byte-wide bus. It connects to the chip enable input of one SRAM. CE1 is lithium-backed. It will remain in a logic high inactive state when V _{CC} falls below V _{LI} .	53 16 8 18	*
20, 24, 26, 28, 30, 33, 35, 37 actually needed. Read/write access is controlled by R/ w. BA14-0 connect directly to an 8k, 32k, or 128k SRAM. If an 8k RAM is used, BA13 and BA14 will be unconnected. If a 128k SRAM is used, the micro converts CE2 and CE3 to serve as A16 and A15 respectively. 71, 69, 67, 65, 61, 59, 57, 55 BD7 - 0. Byte-wide Data bus bits 7-0. This 8-bit bi-directional bus is combined with the non-multiplexed address bus (BA14-0) to access NV SRAM. Decoding is performed on CE1 and CE2. Read/write access is controlled by R/w. BD7-0 connect directly to an SRAM, and optionally to a real-time clock or other peripheral. R/w - Read/Write. This signal provides the write enable to the SRAMs on the byte-wide bus. It is controlled by the memory map and partition. The blocks selected as program (ROM) will be write-protected. CE1 - Chip Enable 1. This is the primary decoded chip enable for memory access on the byte-wide bus. It connects to the chip enable input of one SRAM. CE1 is lithium-backed. It will remain in a logic high inactive state when V _{CC} falls below V _{LI} .		•
30, 33, 35, 37 SRAM. If an 8k RAM is used, BA13 and BA14 will be unconnected. If a 128k SRAM is used, the micro converts CE2 and CE3 to serve as A16 and A15 respectively. 71, 69, 67, 65, 61, 59, 57, 55 BD7 - 0. Byte-wide Data bus bits 7-0. This 8-bit bi-directional bus is combined with the non-multiplexed address bus (BA14-0) to access NV SRAM. Decoding is performed on CE1 and CE2. Read/write access is controlled by R/w. BD7-0 connect directly to an SRAM, and optionally to a real-time clock or other peripheral. R/w - Read/Write. This signal provides the write enable to the SRAMs on the byte-wide bus. It is controlled by the memory map and partition. The blocks selected as program (ROM) will be write-protected. CE1 - Chip Enable 1. This is the primary decoded chip enable for memory access on the byte-wide bus. It connects to the chip enable input of one SRAM. CE1 is lithium-backed. It will remain in a logic high inactive state when V _{CC} falls below V _{LI} .		
converts CE2 and CE3 to serve as A16 and A15 respectively. 71, 69, 67, 65, BD7 - 0. Byte-wide Data bus bits 7-0. This 8-bit bi-directional bus is combined with the non-multiplexed address bus (BA14-0) to access NV SRAM. Decoding is performed on CE1 and CE2. Read/write access is controlled by R/W. BD7-0 connect directly to an SRAM, and optionally to a real-time clock or other peripheral. R/W - Read/Write. This signal provides the write enable to the SRAMs on the byte-wide bus. It is controlled by the memory map and partition. The blocks selected as program (ROM) will be write-protected. CE1 - Chip Enable 1. This is the primary decoded chip enable for memory access on the byte-wide bus. It connects to the chip enable input of one SRAM. CE1 is lithium-backed. It will remain in a logic high inactive state when V CC falls below V LI.		
71, 69, 67, 65, 61, 59, 57, 55 BD7 - 0. Byte-wide Data bus bits 7-0. This 8-bit bi-directional bus is combined with the non-multiplexed address bus (BA14-0) to access NV SRAM. Decoding is performed on CE1 and CE2. Read/write access is controlled by R/W. BD7-0 connect directly to an SRAM, and optionally to a real-time clock or other peripheral. R/W - Read/Write. This signal provides the write enable to the SRAMs on the byte-wide bus. It is controlled by the memory map and partition. The blocks selected as program (ROM) will be write-protected. CE1 - Chip Enable 1. This is the primary decoded chip enable for memory access on the byte-wide bus. It connects to the chip enable input of one SRAM. CE1 is lithium-backed. It will remain in a logic high inactive state when V _{CC} falls below V _{LI} .	, , ,	
address bus (BA14-0) to access NV SRAM. Decoding is performed on CE1 and CE2. Read/write access is controlled by R/w. BD7-0 connect directly to an SRAM, and optionally to a real-time clock or other peripheral. R/w - Read/Write. This signal provides the write enable to the SRAMs on the byte-wide bus. It is controlled by the memory map and partition. The blocks selected as program (ROM) will be write-protected. CEI - Chip Enable 1. This is the primary decoded chip enable for memory access on the byte-wide bus. It connects to the chip enable input of one SRAM. CE1 is lithium-backed. It will remain in a logic high inactive state when V _{CC} falls below V _{LI} .	71 (0 (7 (7	· · · · · · · · · · · · · · · · · · ·
controlled by R/w. BD7-0 connect directly to an SRAM, and optionally to a real-time clock or other peripheral. 10 R/w - Read/Write. This signal provides the write enable to the SRAMs on the byte-wide bus. It is controlled by the memory map and partition. The blocks selected as program (ROM) will be write-protected. 74 CE1 - Chip Enable 1. This is the primary decoded chip enable for memory access on the byte-wide bus. It connects to the chip enable input of one SRAM. CE1 is lithium-backed. It will remain in a logic high inactive state when V _{CC} falls below V _{LI} .		
peripheral. 10 R/w - Read/Write. This signal provides the write enable to the SRAMs on the byte-wide bus. It is controlled by the memory map and partition. The blocks selected as program (ROM) will be write-protected. 74 CEI - Chip Enable 1. This is the primary decoded chip enable for memory access on the byte-wide bus. It connects to the chip enable input of one SRAM. CEI is lithium-backed. It will remain in a logic high inactive state when V _{CC} falls below V _{LI} .	01, 39, 37, 33	
R/w - Read/Write. This signal provides the write enable to the SRAMs on the byte-wide bus. It is controlled by the memory map and partition. The blocks selected as program (ROM) will be write-protected. 74		
controlled by the memory map and partition. The blocks selected as program (ROM) will be write-protected. 74 CEI - Chip Enable 1. This is the primary decoded chip enable for memory access on the byte-wide bus. It connects to the chip enable input of one SRAM. CEI is lithium-backed. It will remain in a logic high inactive state when V _{CC} falls below V _{LI} .		• •
protected. 74 CE1 - Chip Enable 1. This is the primary decoded chip enable for memory access on the byte-wide bus. It connects to the chip enable input of one SRAM. CE1 is lithium-backed. It will remain in a logic high inactive state when V _{CC} falls below V _{LI} .	10	
74		
connects to the chip enable input of one SRAM. $\overline{\text{CE1}}$ is lithium-backed. It will remain in a logic high inactive state when V_{CC} falls below V_{LI} .		<u>•</u>
inactive state when V_{CC} falls below V_{LI} .	74	$\overline{\text{CE1}}$ - Chip Enable 1. This is the primary decoded chip enable for memory access on the byte-wide bus. It
		connects to the chip enable input of one SRAM. $\overline{\text{CE1}}$ is lithium-backed. It will remain in a logic high
72		
	72	

DS5001FP

	It should not be used with a battery-backed chip.
2	<u> </u>
2	CE2 - Chip Enable 2. This chip enable is provided to access a second 32k block of memory. It connects to
	the chip enable input of one SRAM. When MSEL=0, the micro converts $\overline{\text{CE2}}$ into A16 for a 128k x 8
	SRAM. CE2 is lithium-backed and will remain at a logic high when V _{CC} falls below V _{LI} .
63	CE3 - Chip Enable 3. This chip enable is provided to access a third 32k block of memory. It connects to
	the chip enable input of one SRAM. When MSEL=0, the micro converts $\overline{\text{CE3}}$ into A15 for a 128k x 8
	SRAM. $\overline{\text{CE3}}$ is lithium-backed and will remain at a logic high when V $_{\text{CC}}$ falls below V $_{\text{LI}}$.
62	CE4 - Chip Enable 4. This chip enable is provided to access a fourth 32k block of memory. It connects to
	the chip enable input of one SRAM. When MSEL=0, this signal is unused.
	remain at a logic high when V $_{\rm CC}$ falls below $V_{\rm LI}$.
78	PE1 - Peripheral Enable 1. Accesses data memory between addresses 0000h and 3FFFh when the PES bit
	is set to a logic 1. Commonly used to chip enable a byte-wide real time clock such as the DS1283. PEI is
	lithium-backed and will remain at a logic high when V _{CC} falls below V _{LI} . Connect PE1 to battery-backed
2	functions only.
3	PE2 - Peripheral Enable 2. Accesses data memory between addresses 4000h and 7FFFh when the PES bit
	is set to a logic 1. $\overline{\text{PE2}}$ is lithium-backed and will remain at a logic high when V $_{CC}$ falls below V_{LI} .
22	Connect PE2 to battery-backed functions only.
22	PE3 - Peripheral Enable 3. Accesses data memory between addresses 8000h and BFFFh when the PES bit
	is set to a logic 1. PE3 is not lithium-backed and can be connected to any type of peripheral function. If
	connected to a battery-backed chip, it will need additional circuitry to maintain the chip enable in an inactive state when $V_{CC} < V_{LI}$.
23	PE4 - Peripheral Enable 4. Accesses data memory between addresses C000h and FFFFh when the PES bit
	is set to a logic 1. PE4 is not lithium-backed and can be connected to any type of peripheral function. If
	connected to a battery-backed chip, it will need additional circuitry to maintain the chip enable in an
	inactive state when $V_{CC} < V_{LI}$.
32	PROG - Invokes the Bootstrap Loader on a falling edge. This signal should be debounced so that only one
	edge is detected. If connected to ground, the micro will enter Bootstrap loading on power-up. This signal is
	pulled up internally.
42	VRST - This I/O pin (open drain with internal pullup) indicates that the power supply (V CC) has fallen
	below the V _{CCmin} level and the micro is in a reset state. When this occurs, the DS5001FP will drive this pin
	to a logic 0. Because the micro is lithium-backed, this signal is guaranteed even when $V_{CC} = 0V$. Because it is an I/O pin, it will also force a reset if pulled low externally. This allows multiple parts to synchronize
	their power-down resets.
43	PF - This output goes to a logic 0 to indicate that the micro has switched to lithium backup. This
	corresponds to $V_{CC} < V_{LI}$. Because the micro is lithium-backed, this signal is guaranteed even when V_{CC}
	=0V. The normal application of this signal is to control lithium powered current to isolate battery-backed
4.4	functions from non-battery-backed functions.
14	MSEL - Memory select. This signal controls the memory size selection. When MSEL= +5V, the
	DS5001FP expects to use 32k x 8 SRAMs. When MSEL = 0V, the DS5001FP expects to use a 128k x 8 SRAM. MSEL must be connected regardless of partition, mode, etc.
73	NC - Do not connect.


INSTRUCTION SET

The DS5001FP executes an instruction set that is object code-compatible with the industry standard 8051 microcontroller. As a result, software development packages such as assemblers and compilers that have been written for the 8051 are compatible with the DS5001FP. A complete description of the instruction set and operation are provided in the User's Guide section of the Secure Microcontroller Data Book. Also note that the DS5001FP is embodied in the DS2251T module. The DS2251T combines the DS5001FP with between 32k and 128k of SRAM, a lithium cell, and a real time clock. This is packaged in a 72-pin SIMM module.

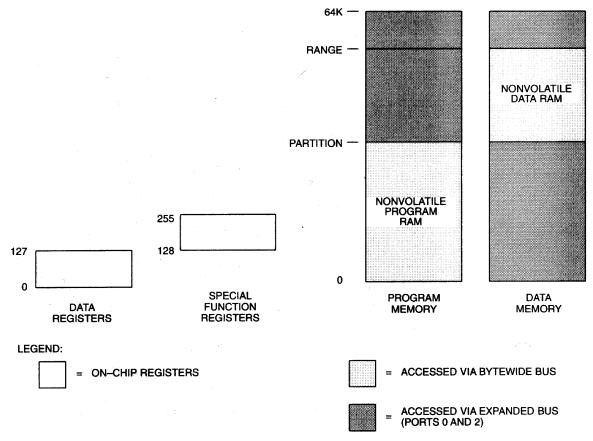
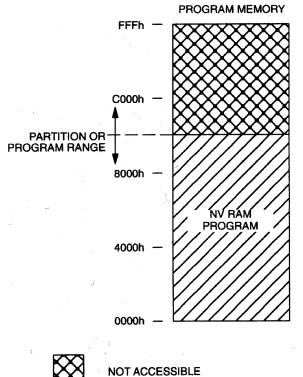

MEMORY ORGANIZATION

Figure 2 illustrates the memory map accessed by the DS5001FP. The entire 64k of program and 64k of data are potentially available to the byte-wide bus. This preserves the I/O ports for application use. The user controls the portion of memory that is actually mapped to the byte-wide bus by selecting the program range and data range. Any area not mapped into the NV RAM is reached via the expanded bus on ports 0 and 2. An alternate configuration allows dynamic partitioning of a 64k space as shown in Figure 3. Selecting PES=1 provides another 64k of potential data storage or memory mapped peripheral space as shown in Figure 4. These selections are made using Special Function Registers. The memory map and its controls are covered in detail in the User's Guide section of the Secure Microcontroller Data Book.

DS5001FP MEMORY MAP IN NON-PARTITIONABLE MODE (PM=1) Figure 2



DS5001FP MEMORY MAP IN PARTITIONABLE MODE (PM=0) Figure 3

NOTE: Partitionable mode is not supported when MSEL pin = 0 (128kB mode).

DS5001FP MEMORY MAP WITH PES=1 Figure 4

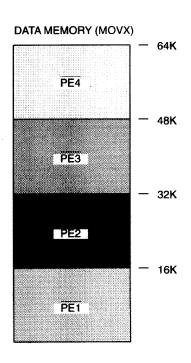
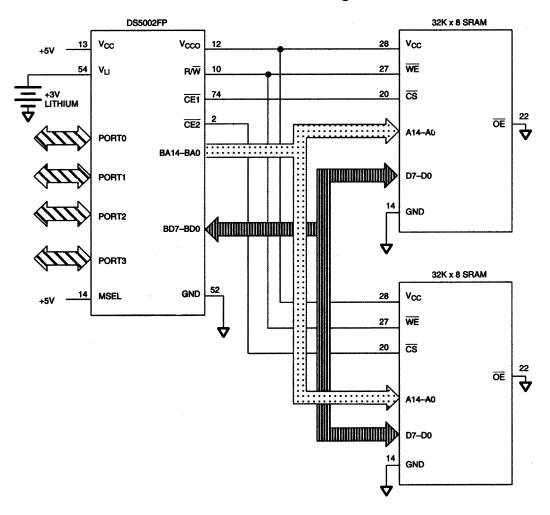



Figure 5 illustrates a typical memory connection for a system using a 128-kbyte SRAM. Note that in this configuration, both program and data are stored in a common RAM chip Figure 6 shows a similar system with using two 32-kbyte SRAMs. The byte-wide address bus connects to the SRAM address lines. The bi-directional byte-wide data bus connects the data I/O lines of the SRAM.

DS5001FP CONNECTION TO 128k X 8 SRAM Figure 5

DS5001FP CONNECTION TO 64k X 8 SRAM Figure 6

POWER MANAGEMENT

The DS5001FP monitors V_{CC} to provide power-fail reset, early warning power-fail interrupt, and switch over to lithium backup. It uses an internal band-gap reference in determining the switch points. These are called V_{PFW} , V_{CCMIN} , and V_{LI} respectively. When V_{CC} drops below V_{PFW} , the DS5001FP will perform an interrupt vector to location 2Bh if the power-fail warning was enabled. Full processor operation continues regardless. When power falls further to V_{CCMIN} , the DS5001FP invokes a reset state. No further code execution will be performed unless power rises back above V_{CCMIN} . All decoded chip enables and the R/W signal go to an inactive (logic 1) state. V_{CC} is still the power source at this time. When V_{CC} drops further to below V_{LI} , internal circuitry will switch to the lithium cell for power. The majority of internal circuits will be disabled and the remaining nonvolatile states will be retained. Any devices connected V_{CCO} will be powered by the lithium cell at this time. V_{CCO} will be at the lithium battery voltage less a diode drop. This drop will vary depending on the load. Low power SRAMs should be used for this reason. When using the DS5001FP, the user must select the appropriate battery to match the RAM data retention current and the desired backup lifetime. Note that the lithium cell is only loaded when $V_{CC} < V_{LI}$. The User's Guide has more information on this topic. The trip points V_{CCMIN} and V_{PFW} are listed in the electrical specifications.

ABSOLUTE MAXIMUM RATINGS*

Voltage on Any Pin Relative to Ground -0.3V to $(V_{CC} + 0.5V)$

Voltage on V_{CC} Related to Ground $-0.3~^{\circ}\text{C}$ to 6.0°C Operating Temperature -40°C to $+85^{\circ}\text{C}$ Storage Temperature -55°C to $+125^{\circ}\text{C}$ Soldering Temperature -260°C for 10~seconds

DC CHARACTERISTICS

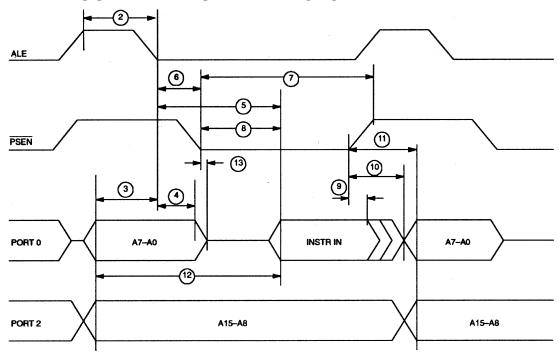
 $(T_A = 0^{\circ}C \text{ to } 70^{\circ}C; V_{CC} = 5V \pm 10\%)$

DO OTIANAOTENIOTIOO		(1A = 0 0 to 10 0, VCC=3V ± 1070)				
PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Input Low Voltage	$V_{\rm IL}$	-0.3		+0.8	V	1
Input High Voltage	$V_{\rm IH1}$	2.0		V _{CC} +0.3	V	1
Input High Voltage	V_{IH2}	3.5		V _{CC} +0.3	V	1
(RST, XTAL1, PROG)						
Output Low Voltage	V_{OL1}		0.15	0.45	V	1, 11
@ $I_{OL}=1.6 \text{ mA (Ports } 1, 2, 3, \overline{PF})$						
Output Low Voltage	V_{OL2}		0.15	0.45	V	1
@ I _{OL} =3.2 mA (Ports 0, ALE,						
$\overline{\text{PSEN}}$, BA15-0, BD7-0, R/ $\overline{\text{W}}$, $\overline{\text{CE1N}}$,						
$\overline{\text{CE}}$ 1-4, $\overline{\text{PE}}$ 1-4, V_{RST})						
Output High Voltage	V_{OH1}	2.4	4.8		V	1
@ I _{OH} =-80 μA (Ports 1, 2, 3)						
Output High Voltage	V_{OH2}	2.4	4.8		V	1
@ I _{OH} =-400 μA (Ports 0, ALE,						
$\overline{\text{PSEN}}$, $\overline{\text{PF}}$, BA15-0, BD7-0, R/ $\overline{\text{W}}$,						
$\overline{\text{CE1N}}$, $\overline{\text{CE}}$ 1-4, $\overline{\text{PE}}$ 1-4, V_{RST})						
Input Low Current	I_{IL}			-50	μA	
$V_{IN}=0.45V$ (Ports 1, 2, 3)						
Transition Current; 1 to 0	I_{TL}			-500	μΑ	
V _{IN} =2.0V (Ports 1, 2, 3)					-	
(0°C to 70°C)						
Transition Current; 1 to 0	I_{TL}			-600	μΑ	10
V _{IN} =2.0V (Ports 1, 2, 3)						
$(-40^{\circ}\text{C to } +85^{\circ}\text{C})$						

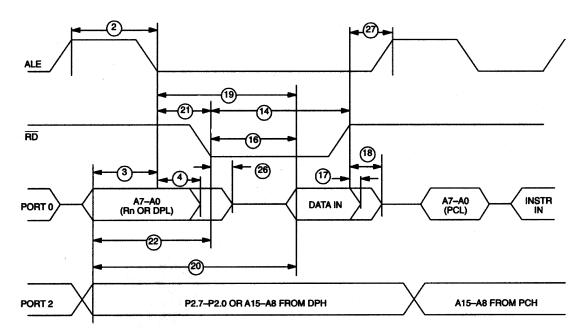
¹This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

²Storage temperature is defined as the temperature of the device when $V_{\rm CC} = 0V$ and $V_{\rm LI} = 0V$. In this state the contents of SRAM are not battery-backed and are undefined.

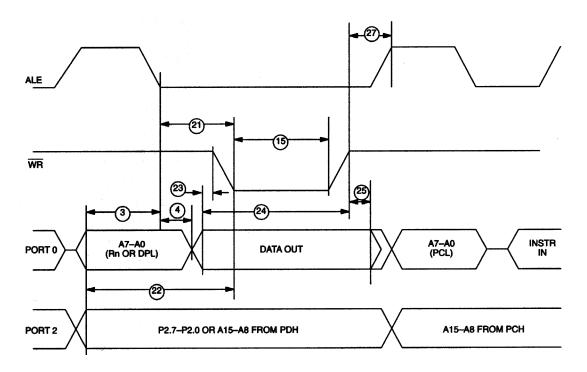
DC CHARACTERISTICS (cont'd) $(T_A = 0^{\circ}\text{C to } 70^{\circ}\text{C}; V_{CC} = 5\text{V} \pm 10\%)$


DC CHARACTERISTICS (CON	_, ′			- 10 70 C		
PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Input Leakage Current	${ m I}_{ m IL}$			+10	μA	
$0.45 < V_{IN} < V_{CC}$ (Port 0, MSEL)						
RST Pulldown Resistor	R_{RE}	40		150	k?	
(0°C to 70°C)						
RST Pulldown Resistor	R_{RE}	30		180	k?	10
$(-40^{\circ}\text{C to } +85^{\circ}\text{C})$						
VRST Pullup Resistor	R_{VR}		4.7		k?	
PROG Pullup Resistor	R_{PR}		40		k?	
Power-Fail Warning Voltage	$V_{ m PFW}$	4.25	4.37	4.50	V	1
(0°C to 70°C)						
Power-Fail Warning Voltage	$V_{ m PFW}$	4.1	4.37	4.6	V	1, 10
$(-40^{\circ}\text{C to } +85^{\circ}\text{C})$						
Minimum Operating Voltage	V _{CCMIN}	4.00	4.12	4.25	V	1
(0°C to 70°C)						
Minimum Operating Voltage	V _{CCMIN}	3.85	4.09	4.25	V	1, 10
$(-40^{\circ}\text{C to } +85^{\circ}\text{C})$						
Lithium Supply Voltage	V_{LI}	2.5		4.0	V	1
Operating Current @ 16 MHz	I_{CC}			36	mA	2
Idle Mode Current @ 12 MHz	I _{IDLE}			7.0	mA	3
(0°C to 70°C)						
Idle Mode Current @ 12 MHz	I _{IDLE}			8.0	mA	3, 10
$(-40^{\circ}\text{C to } +85^{\circ}\text{C})$						
Stop Mode Current	I_{STOP}			80	μA	4
Pin Capacitance	C_{IN}			10	pF	5
Output Supply Voltage (V _{CCO})	V_{CCO1}	-0.35			V	1, 2
Output Supply Battery-backed Mode	$V_{\rm CCO2}$	V_{LI}			V	1, 8
$(V_{CCO}, \overline{CE} 1-4, \overline{PE} 1-2)$		-0.65				,
(0°C to 70°C)						
Output Supply Battery-backed Mode	$V_{\rm CCO2}$	V_{LI}			V	1, 8, 10
$(V_{CCO}, \overline{CE} 1-4, \overline{PE} 1-2)$. CCO2	-0.9			,	1, 0, 10
(-40°C to +85°C)						
Output Supply Current	I _{CCO1}			75	mA	6
$\text{@ V}_{\text{CCO}} = \text{V}_{\text{CC}} - 0.3\text{V}$	1CCO1			75	111/1	U
Lithium-backed Quiescent Current	I_{LI}		5	75	nA	7
(0°C to 70°C)	I LI		3	73	шл	,
Lithium-backed Quiescent Current	I_{LI}		75	500	nA	7
(-40°C to +85°C)	*LI		13	300	11/1	,
Reset Trip Point in Stop Mode						
w/BAT=3.0V (0°C to 70°C)		4.0		4.25		1
w/BAT=3.0V (6 C to 76 C) w/BAT=3.0V (-40°C to +85°C)		3.85		4.25		1, 10
w/BAT=3.0V (40 °C to 70 °C)		4.4		4.65		1, 10

AC CHARACTERISTICS

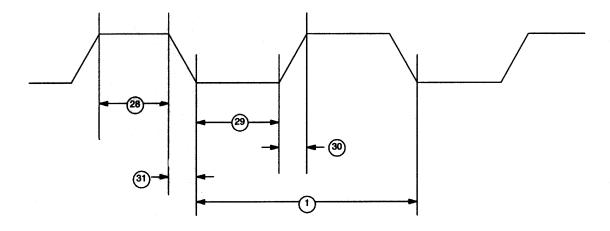

EXPANDED BUS MODE TIMING SPECIFICATIONS $(T_A = 0$ °C to70°C; $V_{CC}=5V \pm 10\%)$

			(· A	10.00, 100	0 = 1070)
#	PARAMETER	SYMBOL	MIN	MAX	UNITS
1	Oscillator Frequency	$1/t_{\rm CLK}$	1.0	16	MHz
2	ALE Pulse Width	$t_{ m ALPW}$	$2t_{CLK}$ -40		ns
3	Address Valid to ALE Low	$t_{ m AVALL}$	t _{CLK} -40		ns
4	Address Hold After ALE Low	t_{AVAAV}	$t_{\rm CLK}$ -35		ns
5	ALE Low to Valid Instr. In @ 12 MHz	$t_{ m ALLVI}$		$4t_{CLK}$ -150	ns
	@ 16 MHz			4t _{CLK} -90	ns
6	ALE Low to PSEN Low	t _{ALLPSL}	t _{CLK} -25		ns
7	PSEN Pulse Width	t_{PSPW}	$3t_{CLK}$ -35		ns
8	PSEN Low to Valid Instr. In @ 12 MHz	t_{PSLVI}		$3t_{CLK}$ -150	ns
	@ 16 MHz			$3t_{CLK}$ -90	ns
9	Input Instr. Hold after PSEN Going High	t _{PSIV}	0		ns
10	Input Instr. Float after PSEN Going High	$t_{ m PSIX}$		t_{CLK} -20	ns
11	Address Hold after PSEN Going High	t_{PSAV}	$t_{\rm CLK}$ -8		ns
12	Address Valid to Valid Instr. In @ 12 MHz	t_{AVVI}		5t _{CLK} -150	ns
	@ 16 MHz			$5t_{CLK}$ -90	ns
13	PSEN Low to Address Float	t_{PSLAZ}	0		ns
14	RD Pulse Width	$t_{ m RDPW}$	$6t_{CLK}$ -100		ns
15	WR Pulse Width	t_{WRPW}	$6t_{CLK}$ -100		ns
16	RD Low to Valid Data In @ 12 MHz	$t_{ m RDLDV}$		$5t_{CLK}$ -165	ns
	@ 16 MHz			$5t_{CLK}$ -105	ns
17	Data Hold after RD High	$t_{ m RDHDV}$	0		ns
18	Data Float after RD High	$t_{ m RDHDZ}$		$2t_{CLK}$ -70	ns
19	ALE Low to Valid Data In @ 12 MHz	$t_{ m ALLVD}$		8t _{CLK} -150	ns
	@ 16 MHz			8t _{CLK} -90	
20	Valid Addr. to Valid Data In @ 12 MHz	$t_{ m AVDV}$		$9t_{CLK}$ -165	ns
	@ 16 MHz			9t _{CLK} -105	
21	ALE Low to RD or WR Low	t_{ALLRDL}	$3t_{CLK}$ -50	$3t_{CLK}+50$	ns
22	Address Valid to RD or WR Low	t _{AVRDL}	4t _{CLK} -130		ns
23	Data Valid to WR Going Low	$t_{ m DVWRL}$	$t_{\rm CLK}$ -60		ns
24	Data Valid to WR High @ 12 MHz	t_{DVWRH}	7t _{CLK} -150		ns
	@ 16 MHz		$7t_{CLK}$ -90		
25	Data Valid after WR High	twrhdv	t_{CLK} -50		ns
26	RD Low to Address Float	t _{RDLAZ}		0	ns
27	RD or WR High to ALE High	t _{RDHALH}	t _{CLK} -40	t _{CLK} +50	ns


EXPANDED PROGRAM MEMORY READ CYCLE

EXPANDED DATA MEMORY READ CYCLE

EXPANDED DATA MEMORY WRITE CYCLE

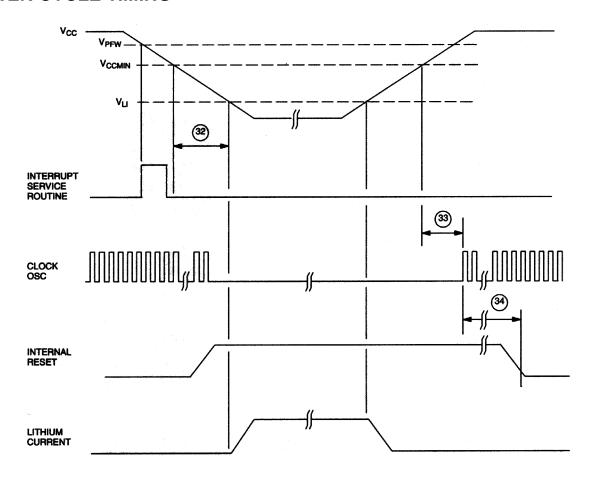


AC CHARACTERISTICS (cont'd) EXTERNAL CLOCK DRIVE

 $(T_A = 0^{\circ}C \text{ to} 70^{\circ}C; V_{CC} = 5V \pm 10\%)$

#	PARAMETE	CR CR	SYMBOL	MIN	MAX	UNITS
28	External Clock High Time	@ 12 MHz	$t_{ m CLKHPW}$	20		ns
		@ 16 MHz		15		ns
29	External Clock Low Time	@ 12 MHz	t_{CLKLPW}	20		ns
		@ 16 MHz		15		ns
30	External Clock Rise Time	@ 12 MHz	t_{CLKR}		20	ns
		@ 16 MHz			15	ns
31	External Clock Fall Time	@ 12 MHz	t_{CLKF}		20	ns
		@ 16 MHz			15	ns

EXTERNAL CLOCK TIMING

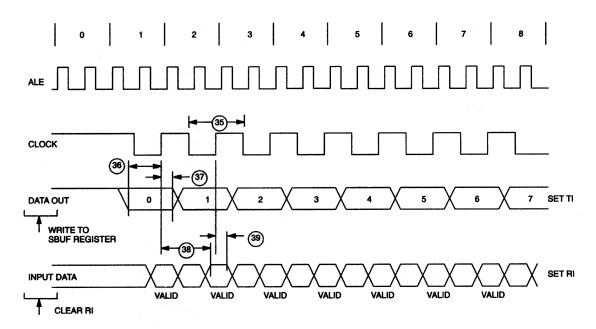

AC CHARACTERISTICS (cont'd)

POWER CYCLE TIME

 $(T_A = 0^{\circ}C \text{ to} 70^{\circ}C; V_{CC} = 5V \pm 10\%)$

#	PARAMETER	SYMBOL	MIN	MAX	UNITS
32	Slew Rate from V _{CCmin} to V _{LI}	t_{F}	130		μs
33	Crystal Start up Time	t_{CSU}		(note 9)	
34	Power-on Reset Delay	t_{POR}		21504	t_{CLK}

POWER CYCLE TIMING

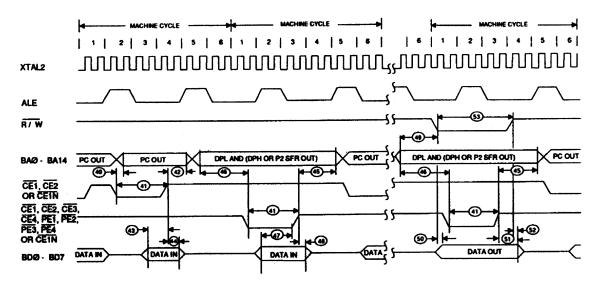


AC CHARACTERISTICS (cont'd)

SERIAL PORT TIMING - MODE 0 $(T_A = 0^{\circ}\text{C to}70^{\circ}\text{C}; V_{CC}=5\text{V} \pm 10\%)$

		\ , , ,		, 00	
#	PARAMETER	SYMBOL	MIN	MAX	UNITS
35	Serial Port Clock Cycle Time	t_{SPCLK}	12t _{CLK}		μs
36	Output Data Setup to Rising Clock Edge	t_{DOCH}	10t _{CLK} -133		ns
37	Output Data Hold after Rising Clock Edge	t_{CHDO}	2t _{CLK} -117		ns
38	Clock Rising Edge to Input Data Valid	t_{CHDV}		10t _{CLK} -133	ns
39	Input Data Hold after Rising Clock Edge	t_{CHDIV}	0		ns

SERIAL PORT TIMING - MODE 0



AC CHARACTERISTICS (cont'd)

BYTE-WIDE ADDRESS/DATA BUS TIMING $(T_A = 0^{\circ}C \text{ to} 70^{\circ}C; V_{CC}=5V \pm 10\%)$

#	DADAMETED	CVMPOI	MIN	NAV	TINITES
	PARAMETER	SYMBOL	MIN	MAX	UNITS
40	Delay to Byte-wide Address Valid from	t _{CE1LPA}		30	ns
	CE1, CE2 or CE1N Low During Opcode				
	Fetch				
41	Pulse Width of CE 1-4, PE 1-4 or CE1N	t_{CEPW}	4t _{CLK} -35		ns
42	Byte-wide Address Hold After CE1, CE2	t _{CE1HPA}	$2t_{CLK}$ -20		ns
	or CE1N High During Opcode Fetch				
43	Byte-wide Data Setup to $\overline{\text{CE1}}$, $\overline{\text{CE2}}$ or	t _{OVCE1H}	1t _{CLK} +40		ns
	CE1N High During Opcode Fetch				
44	Byte-wide Data Hold After CE1, CE2 or	t _{CE1HOV}	0		ns
	CEIN High During Opcode Fetch				
45	Byte-wide Address Hold After $\overline{\text{CE}}$ 1-4,	t_{CEHDA}	4t _{CLK} -30		ns
	\overline{PE} 1-4, or $\overline{CE1N}$ High During MOVX				
46	Delay from Byte-wide Address Valid	t_{CELDA}	4t _{CLK} -35		ns
	CE 1-4, PE 1-4, or CE1N Low During				
	MOVX				
47	Byte-wide Data Setup to \overline{CE} 1-4,	t_{DACEH}	1t _{CLK} +40		ns
	PE 1-4, or CEIN High During MOVX				
	(read)				
48	Byte-wide Data Hold After $\overline{\text{CE}}$ 1-4,	t_{CEHDV}	0		ns
	PE 1-4, or CEIN High During MOVX				
	(read)				
49	Byte-wide Address Valid to R/\overline{W} Active	$t_{ m AVRWL}$	$3t_{CLK}$ -35		ns
	During MOVX (write)				
50	Delay from R/W Low to Valid Data Out	t_{RWLDV}	20		ns
	During MOVX (write)				
51	Valid Data Out Hold Time from $\overline{\text{CE}}$ 1-4,	t_{CEHDV}	1t _{CLK} -15		ns
	PE 1-4, or CE1N High				
52	Valid Data Out Hold Time from R/ \overline{W}	$t_{ m RWHDV}$	0		ns
	High				
53	Write Pulse Width (R/ \overline{W} Low Time)	$t_{ m RWLPW}$	$6t_{CLK}$ -20		ns

BYTE-WIDE BUS TIMING

RPC AC CHARACTERISTICS - DBB READ $(T_A = 0^{\circ}\text{C to}70^{\circ}\text{C}; V_{CC} = 5\text{V} \pm 10\%)$

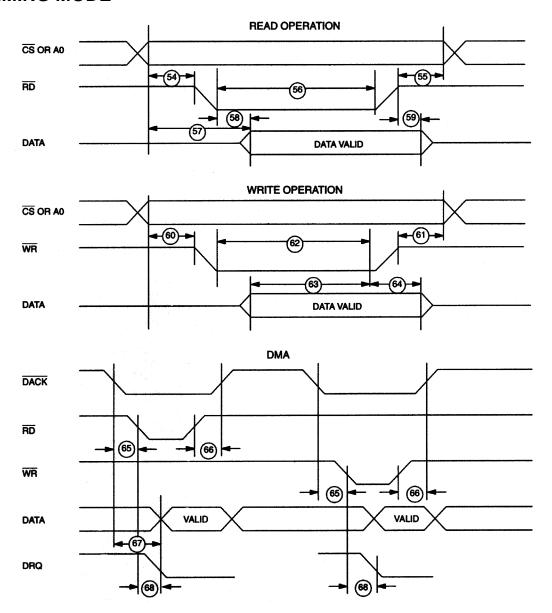
#	PARAMETER	SYMBOL	MIN	MAX	UNITS
54	$\overline{\text{CS}}$, A_0 Setup to $\overline{\text{RD}}$	t_{AR}	0		ns
55	$\overline{\text{CS}}$, A_0 Hold After $\overline{\text{RD}}$	t_{RA}	0		ns
56	RD Pulse Width	t_{RR}	160		ns
57	$\overline{\text{CS}}$, A_0 to Data Out Delay	t_{AD}		130	ns
58	RD to Data Out Delay	$t_{ m RD}$	0	130	ns
59	RD to Data Float Delay	$t_{ m RDZ}$		85	ns

RPC AC CHARACTERISTICS - DBB WRITE $(T_A = 0^{\circ}\text{C to}70^{\circ}\text{C}; V_{CC} = 5\text{V} \pm 10\%)$

				, 00	
#	PARAMETER	SYMBOL	MIN	MAX	UNITS
60	$\overline{\text{CS}}$, A_0 Setup to $\overline{\text{WR}}$	$t_{ m AW}$	0		ns
61A	$\overline{\text{CS}}$, Hold After $\overline{\text{WR}}$	t_{WA}	0		ns
61B	A_0 , Hold After \overline{WR}	t_{WA}	20		ns
62	WR Pulse Width	$t_{ m WW}$	160		ns
63	Data Setup to WR	$t_{ m DW}$	130		ns
64	Data Hold After WR	$t_{ m WD}$	20		ns

AC CHARACTERISTICS - DMA

 $(T_A = 0^{\circ}C \text{ to} 70^{\circ}C; V_{CC} = 5V \pm 10\%)$

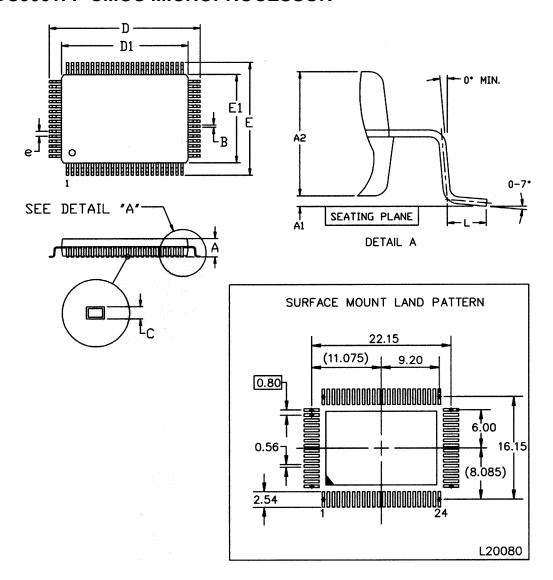

#	PARAMETER	SYMBOL	MIN	MAX	UNITS
65	DACK to WR or RD	t_{ACC}	0		ns
66	RD or WR to DACK	t_{CAC}	0		ns
67	DACK to Data Valid	t_{ACD}	0	130	ns
68	RD or WR to DRQ Cleared	t_{CRQ}		110	ns

AC CHARACTERISTICS - PROG

 $(T_A = 0^{\circ}C \text{ to} 70^{\circ}C; V_{CC} = 5V \pm 10\%)$

		\ /\		, 00	,
#	PARAMETER	SYMBOL	MIN	MAX	UNITS
69	PROG Low to Active	t_{PRA}	48		CLKS
70	PROG High to Inactive	t_{PRI}	48		CLKS

RPC TIMING MODE



NOTES:

All parameters apply to both commercial and industrial temperature operation unless otherwise noted.

- 1. All voltages are referenced to ground.
- 2. Maximum operating I $_{CC}$ is measured with all output pins disconnected; XTAL1 driven with t_{CLKR} , t_{CLKF} =10 ns, V_{IL} = 0.5V; XTAL2 disconnected; RST = PORT0 = V_{CC} , MSEL = V_{SS} .
- 3. Idle mode I_{IDLE} is measured with all output pins disconnected; XTAL1 driven with t_{CLKR} , $t_{CLKF} = 10$ ns, $V_{IL} = 0.5V$; XTAL2 disconnected; PORT0 = V_{CC} , RST = MSEL = V_{SS} .
- 4. Stop mode I_{STOP} is measured with all output pins disconnected; PORT0 = V_{CC} ; XTAL2 not connected; RST = MSEL = XTAL1 = V_{SS} .
- 5. Pin capacitance is measured with a test frequency 1 MHz, $t_A = 25$ °C.
- 6. I_{CCO1} is the maximum average operating current that can be drawn from V _{CCO} in normal operation.
- 7. I_{LI} is the current drawn from V_{LI} input when $V_{CC} = 0V$ and V_{CCO} is disconnected.
- 8. V_{CCO2} is measured with $V_{CC} < V_{LI}$, and a maximum load of 10 μ A on V_{CCO} .
- 9. Crystal start-up time is the time required to get the mass of the crystal into vibrational motion from the time that power is first applied to the circuit until the first clock pulse is produced by the on-chip oscillator. The user should check with the crystal vendor for a worst case specification on this time.
- 10. This parameter applies to industrial temperature operation.
- 11. PF pin operation is specified with $V_{BAT} \ge 3.0V$.

DS5001FP CMOS MICROPROCESSOR

	MILLIMETERS		
DIM	MIN	MAX	
A	1	3.40	
A1	0.25	-	
A2	2.55	2.87	
В	0.30	0.50	
C	0.13	0.23	
D	23.70	24.10	
D1	19.90	20.10	
\mathbf{E}	17.70	18.10	
E 1	13.90	14.10	
e	0.80 BSC		
L	0.65	0.95	

56-G4005-001

DATA SHEET REVISION SUMMARY

The following represent the key differences between 11/27/95 and 07/30/96 version of the DS5001FP data sheet. Please review this summary carefully.

- 1. Change V_{CC02} specification from V_{LI} -0.5 to V_{LI} -0.65 (PCN F62501).
- 2. Update mechanical specifications.

The following represent the key differences between 07/30/96 and 11/19/96 version of the DS5001FP data sheet. Please review this summary carefully.

1. Change V_{CC01} from V_{CC} -0.3 to V_{CC} -0.35.

The following represent the key differences between 11/19/96 and 06/12/97 version of the DS5001FP data sheet. Please review this summary carefully.

- 2. PF signal moved from V_{OL2} test specification to V_{OL1}. PCN No. (D72502)
- 3. AC characteristics for battery-backed SDI pulse specification added.

The following represent the key differences between 06/12/97 and 05/10/99 version of the DS5001FP data sheet. Please review this summary carefully.

- 1. Reduced absolute maximum voltage to V_{CC} +0.5V.
- 2. Added note clarifying storage temperature specification is for non-battery-backed state.
- 3. Changed R_{RE} min (industrial temp range) from 40 kO to 30 kO.
- 4. Changed V_{PFW} max (industrial temp range) from 4.5V to 4.6V.
- 5. Added industrial specification for I LI.
- 6. Reduced t_{CE1HOV} and t_{CEHDV} from 10 ns to 0 ns.

The following represent the key differences between 05/10/99 and 05/24/99 version of the DS5001FP data sheet. Please review this summary carefully.

1. Minor markups and ready for approval.