
FEATURES

- Complete E1, T1, or J1 Line Interface Unit
- Supports both long and short haul trunks
- Internal software-selectable receive-side termination for 75/100/120 ohm
- 3.3V or 5V (CMOS) in same device
- 32-bit or 128-bit crystal-less jitter attenuator requires only a 2.048MHz master clock for both E1 and T1 with option to use 1.544MHz for T1
- Generates the appropriate line build outs, with and without return loss, for E1 and DSX-1 and CSU line build outs for T1
- AMI, HDB3, and B8ZS, encoding/decoding
- 16.384MHz, 8.192MHz, 4.096MHz, or 2.048MHz clock output synthesized to recovered clock
- Programmable monitor mode for receiver
- Loopbacks and PRBS pattern generation/ detection with output for received errors
- Generates/detects in-band loop codes, 1 to 16 bits including CSU loop codes
- 8-bit parallel or serial interface with optional hardware mode
- MUX'd and Non-MUX'd parallel bus supports Intel or Motorola
- Detects/generates blue (AIS) alarms
- NRZ/bipolar interface for TX/RX data I/O
- Transmit open circuit detection
- Receive Carrier Loss (RCL) indication (G.775)
- HIGHZ State for TTIP and TRING
- 50mA (rms) current limiter

7mm CABGA

ORDERING INFORMATION

DS2148TN 44 pin TQFP

DS2148GN 7mm CABGA

DS21Q48N (Quad) BGA

DESCRIPTION

The DS2148 is a complete selectable E1 or T1 Line Interface Unit (LIU) for short haul and long haul applications. Throughout the data sheet, J1 is represented wherever T1 exists. The receive sensitivity adjusts automatically to the incoming signal and can be programmed for 0-12dB or 0-43dB for E1 applications and 0-30dB or 0-36dB for T1 applications. The device can generate the necessary G.703 E1 waveshapes in 75 ohm or 120 ohm applications and DSX-1 line build outs or CSU line build outs of 0dB, -7.5 dB, -15 dB, and -22.5 dB for T1 applications. The crystal-less onboard jitter attenuator requires only a 2.048MHz MCLK for both E1 and T1 applications (with the option of using a 1.544 MHz MCLK in T1 applications). The jitter attenuator FIFO is selectable to either 32 bits or 128 bits in depth and can be placed in either the transmit or receive data paths. An n X 2.048MHz output clock synthesized to RCLK is available for use as a backplane system clock (where n = 1, 2, 4, or 8). The DS2148 has diagnostic capabilities such as loopbacks and PRBS pattern generation/detection. 16-bit loop-up and loop-down codes can be generated and detected. The device can be controlled via an 8-bit parallel MUX'd or non-MUX'd port, a serial port or used in hardware mode. The device fully meets all of the latest E1 and T1 specifications including ANSI T1.403-1999, ANSI T1.408, AT&T TR 62411, ITU G.703, G.704, G.706, G.736, G.775, G.823, I.431, O.151, O.161, ETSI ETS 300 166, JTG.703, JTI.431, JJ-20.1, TBR12, TBR13, and CTR4.

Page 1 092899

TABLE OF CONTENTS

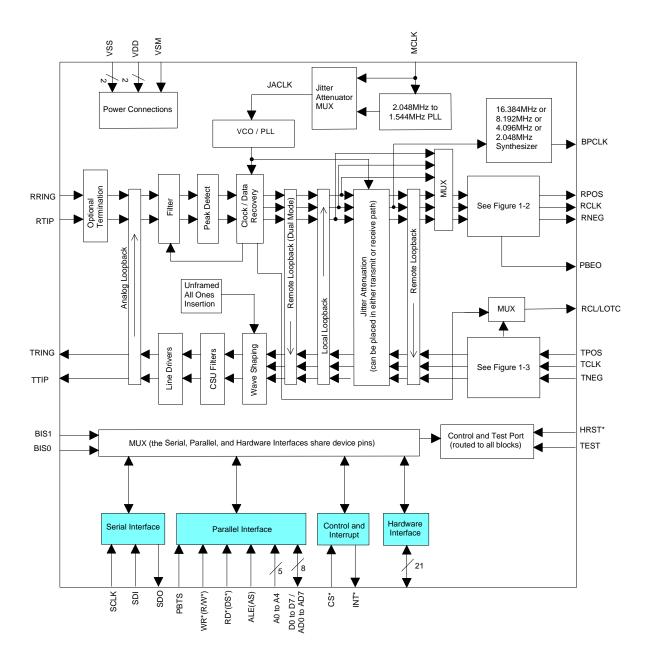
1.	LIST OF FIGURES	3
2.	LIST OF TABLES	4
3.	INTRODUCTION	5
3.	1 DOCUMENT REVISION HISTORY	5
4.	PIN DESCRIPTION	9
4.		
	REGISTER MEMORY MAP & PORT OPERATION	
5.1 5.2		
5.3		
6.	CONTROL REGISTERS	20
6.	1 Device Power-Up & Reset	22
7.	STATUS REGISTERS	27
8.	DIAGNOSTICS	33
8.3		
8.2		
	8.2.1 Remote Loopback (RLB)	
	8.2.2 Local Loopback (LLB)	
	8.2.3 Analog Loopback (LLB)	<i>3</i> 8
	8.2.4 Dual Loopback (DLB)	
8.3		
8.4	2 Zilion Coon Zilion	
	8.4.1 Error Counter Update	
8.5	5 Error Insertion	40
9.	ANALOG INTERFACE	41
9.	1 Receiver	41
9.2	2 Transmitter	42
9.3	3 JITTER ATTENUATOR	42
9.4	4 G.703 Section 10 Synchronization Signal	42
10.	DS21Q48 QUAD LIU	51
11.	DC CHARACTERISTICS	55
12.	AC CHARACTERISTICS	56
13	MECHANICAL DIMENSIONS	65

1. LIST OF FIGURES

Figure 3-1 DS2148 BLOCK DIAGRAM	6
Figure 3-2 RECEIVE LOGIC	7
Figure 3-3 TRANSMIT LOGIC	
Figure 4-1 PARALLEL PORT MODE PINOUT (BIS1 = 0, BIS0 = 1 or 0)	15
Figure 4-2 SERIAL PORT MODE PINOUT (BIS1 = 1, BIS0 = 0)	15
Figure 4-3 HARDWARE MODE PINOUT (BIS1 = 1, BIS0 = 1)	16
Figure 5-1 SERIAL PORT OPERATION MODE 1	18
Figure 5-2 SERIAL PORT OPERATION MODE 2	19
Figure 5-3 SERIAL PORT OPERATION MODE 3	19
Figure 5-4 SERIAL PORT OPERATION MODE 4	19
Figure 9-1 BASIC INTERFACE	45
Figure 9-2 PROTECTED INTERFACE USING INTERNAL RECEIVE TERMINATION	46
Figure 9-3 PROTECTED INTERFACE USING EXTERNAL RECEIVE TERMINATION	47
Figure 9-4 E1 TRANSMIT PULSE TEMPLATE	48
Figure 9-5 T1 TRANSMIT PULSE TEMPLATE	49
Figure 9-6 JITTER TOLERANCE	50
Figure 9-7 JITTER ATTENUATION	50
Figure 10-1 BGA 12 x 12 PIN LAYOUT	54
Figure 12-1 INTEL BUS READ TIMING (PBTS = 0, BIS1 = 0, BIS0 = 0)	57
Figure 12-2 INTEL BUS WRITE TIMING (PBTS = 0, BIS1 = 0, BIS0 = 0)	57
Figure 12-3 MOTOROLA BUS TIMING (PBTS = 1, BIS1 = 0, BIS0 = 0)	58
Figure 12-4 INTEL BUS READ TIMING (PBTS = 0, BIS1 = 0, BIS0 = 1)	59
Figure 12-5 INTEL BUS WRITE TIMING (PBTS = 0, BIS1 = 0, BIS0 = 1)	60
Figure 12-6 MOTOROLA BUS READ TIMING (PBTS = 1, BIS1 = 0, BIS0 = 1)	60
Figure 12-7 MOTOROLA BUS WRITE TIMING (PBTS = 1, BIS1 = 0, BIS0 = 1)	61
Figure 12-8 SERIAL BUS TIMING (BIS1 = 1, BIS0 = 0)	62
Figure 12-9 RECEIVE SIDE TIMING	
Figure 12-10 TRANSMIT SIDE TIMING	64

2. LIST OF TABLES

Table 4-1 BUS INTERFACE SELECTION	9
Table 4-2 PIN ASSIGNMENT	
Table 4-3 PIN DESCRIPTIONS (Sorted by Pin Name, DS2148T Pin Numbering)	11
Table 4-4 LOOP BACK CONTROL IN HARDWARE MODE	
Table 4-5 TRANSMIT DATA CONTROL IN HARDWARE MODE	14
Table 4-6 RECEIVE SENSITIVITY SETTINGS	14
Table 4-7 MONITOR GAIN SETTINGS	14
Table 4-8 INTERNAL RX TERMINATION SELECT	14
Table 4-9 MCLK SELECTION	
Table 5-1 REGISTER MAP	
Table 6-1 MCLK SELECTION	
Table 6-2 RECEIVE SENSITIVITY SETTINGS	
Table 6-3 BACK PLANE CLOCK SELECT	25
Table 6-4 MONITOR GAIN SETTINGS	25
Table 6-5 INTERNAL RX TERMINATION SELECT	25
Table 7-1 RECEIVED ALARM CRITERIA	
Table 7-2 RECEIVE LEVEL INDICATION	32
Table 8-1 TRANSMIT CODE LENGTH	
Table 8-2 RECEIVE CODE LENGTH	
Table 8-3 DEFINITION OF RECEIVED ERRORS	
Table 8-4 FUNCTION OF ECRS BITS AND RNEG PIN	
Table 9-1 LINE BUILD OUT SELECT FOR E1 IN REGISTER CCR4 (ETS = 0)	
Table 9-2 LINE BUILD OUT SELECT FOR T1 IN REGISTER CCR4 (ETS = 1)	43
Table 9-3 TRANSFORMER SPECIFICATIONS FOR 5V OPERATION	44
Table 9-4 TRANSFORMER SPECIFICATIONS FOR 3.3V OPERATION	
Table 10-1 DS21Q48 PIN ASSIGNMENT	51


3. INTRODUCTION

The analog AMI/HDB3 waveform off of the E1 line or the AMI/B8ZS waveform off of the T1 line is transformer coupled into the RTIP and RRING pins of the DS2148. The user has the option to use internal termination, software selectable for 75/100/120 ohm applications, or external termination. The device recovers clock and data from the analog signal and passes it through the jitter attenuation MUX outputting the received line clock at RCLK and bipolar or NRZ data at RPOS and RNEG. The DS2148 contains an active filter that reconstructs the analog received signal for the nonlinear losses that occur in transmission. The receive circuitry also is configurable for various monitor applications. The device has a usable receive sensitivity of 0dB to 43dB for E1 and 0dB to -36dB for T1 which allows the device to operate on 0.63mm (22AWG) cables up to 2.5km (E1) and 6k feet (T1) in length. Data input at TPOS and TNEG is sent via the jitter attenuation MUX to the waveshaping circuitry and line driver. The DS2148 will drive the E1 or T1 line from the TTIP and TRING pins via a coupling transformer. The line driver can handle both CEPT 30/ISDN-PRI lines for E1 and long haul (CSU) or short haul (DSX-1) lines for T1.

3.1 Document Revision History

Date	Change
9-17-99	100 ohm / 60 ohm termination reversed in INTERNAL RX TERMINATION SELECT tables
9-28-99	Add DS21Q48 pinout

Figure 3-1 DS2148 BLOCK DIAGRAM

Page 6 092899

Figure 3-2 **RECEIVE LOGIC**

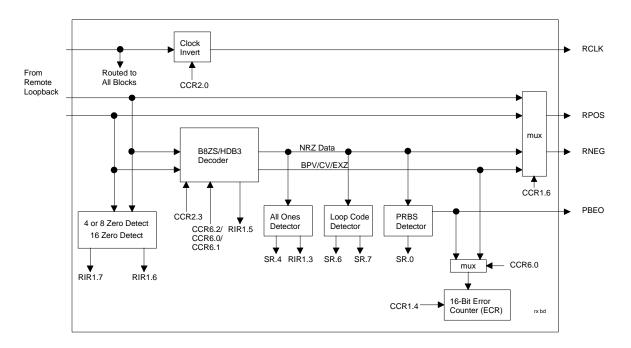
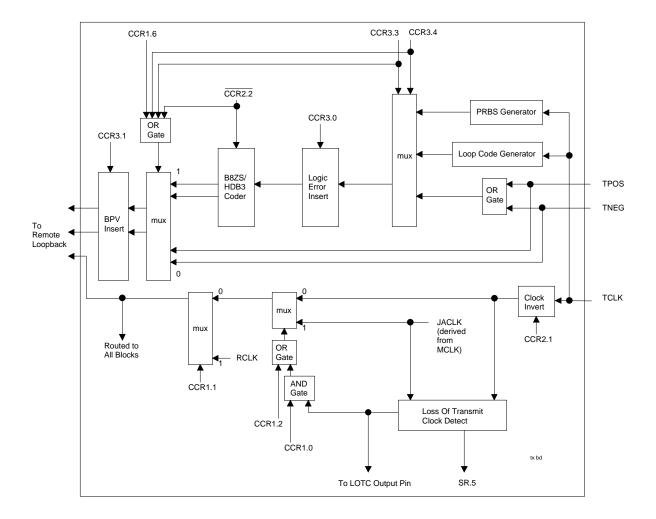



Figure 3-3 **TRANSMIT LOGIC**

Page 8 092899

4. PIN DESCRIPTION

The DS2148 can be controlled in either a Parallel Port Mode, a Serial Port Mode, or a Hardware Mode. See Table 4-1. The Parallel and Serial Port Modes are described in Section 3, and the Hardware Mode is described below.

Table 4-1 BUS INTERFACE SELECTION

BIS1	BIS0	BUS INTERFACE TYPE
0	0	Parallel Port Mode (multiplexed)
0	1	Parallel Port Mode (non-multiplexed)
1	0	Serial Port Mode
1	1	Hardware Mode

Table 4-2 PIN ASSIGNMENT

DS2148T	DS2148G	I/O	Parallel	Serial	Hardware
PIN#	PIN#		Port Mode	Port Mode	Mode
1	C3	I	CS*	CS*	EGL
2	C2	I	RD*(DS*)	NA	ETS
3	B1	I	WR*(R/W*)	NA	NRZE
4	D2	I	ALE(AS)	NA	SCLKE
5	C1	I	NA	SCLK	L2
6	D3	I	NA	SDI	L1
7	D1	I/O	A4	SDO	L0
8	E1	I	A3	ICES	DJA
9	F2	I	A2	OCES	JAMUX
10	F1	I	A1	NA	JAS
11	G1	I	A0	NA	HBE
12	E3	I/O	D7/AD7	NA	CES
13	F3	I/O	D6/AD6	NA	TPD
14	G2	I/O	D5/AD5	NA	TX0
15	F4	I/O	D4/AD4	NA	TX1
16	G3	I/O	D3/AD3	NA	LOOP0
17	E4	I/O	D2/AD2	NA	LOOP1
18	G4	I/O	D1/AD1	NA	MM0
19	F5	I/O	D0/AD0	NA	MM1
20	G5	I	VSM	VSM	VSM
21	F6	-	VDD	VDD	VDD
22	G6	-	VSS	VSS	VSS
23	E5	I/O	INT*	INT*	RT1
24	E6	0	PBEO	PBEO	PBEO
25	F7	О	RCL/LOTC	RCL/LOTC	RCL
26	D6	I	TEST	TEST	TEST
27	D5	I	RTIP	RTIP	RTIP
28	D7	I	RRING	RRING	RRING
29	C6	I	HRST*	HRST*	HRST*
30	C7	I	MCLK	MCLK	MCLK
31	B6	О	BPCLK	BPCLK	BPCLK
32	B7	I	BIS0	BIS0	BIS0
33	A7	I	BIS1	BIS1	BIS1

34	C5	О	TTIP	TTIP	TTIP
35	B5	-	VSS	VSS	VSS
36	A6	-	VDD	VDD	VDD
37	B4	O	TRING	TRING	TRING
38	C4	O	RPOS	RPOS	RPOS
39	A4	O	RNEG	RNEG	RNEG
40	В3	O	RCLK	RCLK	RCLK
41	A3	I	TPOS	TPOS	TPOS
42	B2	I	TNEG	TNEG	TNEG
43	A2	I	TCLK	TCLK	TCLK
44	A1	I	PBTS	NA	RT0

Table 4-3 PIN DESCRIPTIONS (Sorted by Pin Name, DS2148T Pin Numbering)

Acronym	Pin	I/O	Description
A0	11	I	Address Bus. In non-multiplexed bus operation (BIS1 = 0 , BIS0 = 1), serves
to	to		as the address bus. In multiplexed bus operation (BIS1 = 0 , BIS0 = 0), these
A4	7		pins are not used and should be tied low.
ALE	4	I	Address Latch Enable (Address Strobe). When using the parallel port
(AS)	-	1	(BIS1 = 0) in multiplexed bus mode (BIS0 = 0), serves to demultiplex the bus
(Ab)			on a positive-going edge. In non-multiplexed bus mode (BISO = 1), should be
			tied low.
BISO/	32/	I	Bus Interface Select Bits 0 & 1. Used to select bus interface option. See
BIS1	33		Table 4-1 for details.
BPCLK	31	О	Back Plane Clock. A 16.384MHz, 8.192MHz, 4.096MHz, or 2.048MHz
			clock output that is referenced to RCLK selectable via CCR5.7 and CCR5.6.
			In hardware mode, defaults to 16.384MHz output.
CES	12	I	Receive & Transmit Clock Edge Select. Selects which RCLK edge to
			update RPOS and RNEG and which TCLK edge to sample TPOS and TNEG.
			CES combines TCES (CCR2.1) and RCES (CCR2.0)
			0 = update RNEG/RPOS on rising edge of RCLK; sample TPOS/TNEG on
			falling edge of TCLK
			1 = update RNEG/RPOS on falling edge of RCLK; sample TPOS/TNEG on
			rising edge of TCLK
CS*	1	I	Chip Select. Must be low to read or write to the device. CS* is an active low
CS.	1	1	-
D0 / AD0	10	T/O	signal.
D0 / AD0	19	I/O	Data Bus / Address/Data Bus. In non-multiplexed bus operation (BIS1 = 0,
to	to		BISO = 1), serves as the data bus. In multiplexed bus operation (BIS1 = 0,
D7 / AD7	12		BIS0 = 0), serves as an 8-bit multiplexed address/data bus.
<u>DJA</u>	8	I	Disable Jitter Attenuator.
			0 = jitter attenuator enabled
			1 = jitter attenuator disabled
<u>EGL</u>	1	I	Receive Equalizer Gain Limit. This bit controls the sensitivity of the receive
			equalizer. See Table 4-6.
ETS	2	I	E1/T1 Select.
			0 = E1
			1 = T1
HBE	11	I	Receive & Transmit HDB3/B8ZS Enable. HBE combines RHBE (CCR2.3)
			and THBE (CCR2.2).
			0 = enable HDB3 (E1) / B8ZS (T1)
			1 = disable HDB3 (E1) / B8ZS (T1)
HRST*	29	I	Hardware Reset. Bringing HRST* low will reset the DS2148 setting all
11131	2)	1	control bits to their default state of all zeros.
ICEC	8	I	Input Clock Edge Select. Selects whether the serial port data input (SDI) is
<u>ICES</u>	0	1	
INTT	- 22	т	sampled on rising (ICES = 0) or falling edge (ICES = 1) of SCLK.
INT*	23	I	Interrupt [INT*] pin 23. Flags host controller during conditions and change
*		+	of conditions defined in the Status Register. Active low, open drain output.
<u>JAMUX</u>	9	I	Jitter Attenuator MUX. Controls the source for JACLK. See Figure 3-1and
			Table 4-9.
			0 = JACLK sourced from MCLK (2.048MHz or 1.544MHz at MCLK)
			1 = JACLK sourced from internal PLL (2.048MHz at MCLK)
<u>JAS</u>	10	I	Jitter Attenuator Select.
			0 = place the jitter attenuator on the receive side
			1 = place the jitter attenuator on the transmit side
			<u> </u>

I 0/I 1/I 2	7/	т	Trongmit I III Wayaahana Calaat Dita 0 9-1 [III/W Madal Thasa inputs
<u>L0/L1/L2</u>	7/	I	Transmit LIU Waveshape Select Bits 0 & 1 [H/W Mode]. These inputs
	6/		determine the waveshape of the transmitter. See Table 9-1 & Table 9-2.
	5		
LOOP0/	16/	I	Loopback Select Bits 0 & 1 [H/W Mode]. These inputs determine the active
LOOP1	17		loopback mode (if any). See Table 4-4.
MCLK	30	I	Master Clock. A 2.048MHz (+/-50 ppm) clock source with TTL levels is
WEEK		1	applied at this pin. This clock is used internally for both clock/data recovery
			and for jitter attenuation. Use of a T1 1.544MHz clock source is optional.
			See note 2 on clock accuracy at the end of this table.
<u>MM0/</u>	18/	I	Monitor Mode Select Bits 0 & 1 [H/W Mode]. These inputs determine if the
MM1	19		receive equalizer is in a monitor mode. See Table 4-7.
NA	-	I	Not Assigned. Should be tied low.
NRZE	3	I	NRZ Enable [H/W Mode].
INIZL	3	1	0 = Bipolar data at RPOS/RNEG and TPOS/TNEG
			1 = NRZ data at RPOS and TPOS or TNEG; RNEG outputs a positive going
			pulse when device receives a BPV, CV, or EXZ.
<u>OCES</u>	9	I	Output Clock Edge Select. Selects whether the serial port data output (SDO)
			is valid on the rising (OCES = 1) or falling edge (OCES = 0) of SCLK.
PBEO	24	О	PRBS Bit Error Output. The receiver will constantly search for a 2 ¹⁵ -1 or a
1220	- '		2 ²⁰ -1 PRBS depending on the ETS bit setting (CCR1.7). Remains high if out
			of synchronization with the PRBS pattern. Goes low when synchronized to
			1 .
			the PRBS pattern. Any errors in the received pattern after synchronization will
			cause a positive going pulse (with same period as E1 or T1 clock) synchronous
			with RCLK. PRBS bit errors can also be reported to the ECR1 and ECR2
			registers by setting CCR6.2 to a logic 1.
PBTS	44	I	Parallel Bus Type Select. When using the parallel port (BIS1 = 0), set high to
			select Motorola bus timing, set low to select Intel bus timing. This pin controls
			the function of the RD*(DS*), ALE(AS), and WR*(R/W*) pins. If PBTS = 1
			and $BIS1 = 0$, then these pins assume the Motorola function listed in
			parenthesis (). In serial port mode, this pin should be tied low.
RCLK	40	О	Receive Clock. Buffered recovered clock from the line. Synchronous to
			MCLK in absence of signal at RTIP and RRING.
RD*	2	I	Read Input (Data Strobe). RD* and DS* are active low signals. DS active
(DS*)	-	_	high when in non-multiplexed, Motorola mode. See the bus timing diagrams
(DS)			in section 12.
D.CIL /	25	_	
RCL/	25	О	Receive Carrier Loss / Loss of Transmit Clock. An output which will
LOTC			toggle high during a receive carrier loss ($CCR2.7 = 0$) or will toggle high if the
			TCLK pin has not been toggled for 5 μ sec $\pm 2 \mu$ sec (CCR2.7 = 1). CCR2.7
			defaults to logic 0 when in hardware mode.
RNEG	39	I	Receive Negative Data. Updated on the rising edge (CCR2.0 = 0) or the
12,20		1	falling edge (CCR2.0 = 1) of RCLK with the bipolar data out of the line
			interface. Set NRZE (CCR1.6) to a one for NRZ applications. In NRZ mode,
			data will be output on RPOS while a received error will cause a positive-going
			pulse synchronous with RCLK at RNEG. See section 6.4 for details.
RPOS	38	I	Receive Positive Data. Updated on the rising edge ($CCR2.0 = 0$) or the
			falling edge ($CCR2.0 = 1$) of RCLK with bipolar data out of the line interface.
			Set NRZE (CCR1.6) to a one for NRZ applications. In NRZ mode, data will
			be output on RPOS while a received error will cause a positive-going pulse
P.M.C.		+	synchronous with RCLK at RNEG. See section 6.4 for details.
<u>RT0/</u>	44/	I	Receive LIU Termination Select Bits 0 & 1 [H/W Mode]. These inputs
<u>RT1</u>	23		determine the receive termination. See Table 4-8.
RTIP/	28/	I	Receive Tip and Ring. Analog inputs for clock recovery circuitry. These
RRING	27		pins connect via a 1:1 transformer to the line. See Section 7 for details.
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

<u>SCLK</u>	5	I	Serial Clock. Serial bus clock input.
SCLKE	4	I	Receive & Transmit Synchronization Clock Enable. SCLKE combines RSCLKE (CCR5.3) and TSCLKE (CCR5.2). 0 = disable 2.048MHz synchronization receive mode 1 = enable 2.048MHz synchronization receive mode
SDI	6	I	Serial Data Input. Sampled on rising edge (ICES = 0) or the falling edge (ICES = 1) of SCLK.
SDO	7	О	Serial Data Output. Valid on the falling edge (OCES = 0) or the rising edge (OCES = 1) of SCLK.
TCLK	43	I	Transmit Clock. A 2.048MHz or 1.544MHz primary clock. Used to clock data through the transmit side formatter. Can be sourced internally by MCLK or RCLK. See Common Control Register 1 and Figure 3-3.
TEST	26	I	3-State Control. Set high to tri-state all outputs and I/O pins (including the parallel control port). Set low for normal operation. Useful in board level testing.
TNEG	42	I	Transmit Negative Data. Sampled on the falling edge (CCR2.1 = 0) or the rising edge (CCR2.1 = 1) of TCLK for data to be transmitted out onto the line.
TPD	13	I	Transmit Power Down. 0 = normal transmitter operation 1 = powers down the transmitter and tri-states the TTIP and TRING pins
TPOS	41	I	Transmit Positive Data. Sampled on the falling edge (CCR2.1 = 0) or the rising edge (CCR2.1 = 1) of TCLK for data to be transmitted out onto the line.
TTIP/ TRING	34/ 37	О	Transmit Tip and Ring [TTIP & TRING]. Analog line driver outputs. These pins connect via a step-up transformer to the line. See Section 7 for details.
TX0/ TX1	14/ 15	I	Transmit Data Source Select Bits 0 & 1 [H/W Mode]. These inputs determine the source of the transmit data. SeeTable 4-5.
VDD	21/ 36	-	Positive Supply. 5.0 volts +/-5% or 3.3 volts +/-5%.
VSM	20	I	Voltage Supply Mode. Determines 3.3V or 5V mode. Tie low for 3.3V operation and high for 5V operation.
VSS	22/ 35	-	Signal Ground.
WR* (R/W*)	3	I	Write Input (Read/Write). WR* is an active low signal. See the bus timing diagrams in section 12.

Notes:

- 1. Serial Port Mode pins are double <u>underlined</u> and Hardware Mode pins are single <u>underlined</u>.
- 2. G.703 requires an accuracy of +/-50ppm for both T1 and E1. TR62411 and ANSI specs require an accuracy of +/- 32ppm for T1 interfaces.

Table 4-4 LOOP BACK CONTROL IN HARDWARE MODE

LOOPBACK	SYMBOL	CONTROL BIT	LOOP1	LOOP0
Remote Loop Back	RLB	CCR6.6	1	1
Local Loop Back	LLB	CCR6.7	1	0
Analog Loop Back	ALB	CCR6.4	0	1
No Loop Back	-	-	0	0

Table 4-5 TRANSMIT DATA CONTROL IN HARDWARE MODE

TRANSMIT DATA	SYMBOL	CONTROL BIT	TX1	TX0
Transmit Unframed All Ones	TUA1	CCR3.7	1	1
Transmit Alternating Ones and Zeros	TAOZ	CCR3.5	1	0
Transmit PRBS	TPRBSE	CCR3.4	0	1
TPOS and TNEG	-	-	0	0

Table 4-6 RECEIVE SENSITIVITY SETTINGS

EGL (CCR4.4)	ETS (CCR1.7)	RECEIVE SENSITIVITY
0	0 (E1)	-12dB (short haul)
1	0 (E1)	-43dB (long haul)
1	1 (T1)	-30dB (limited long haul)
0	1 (T1)	-36dB (long haul)

Table 4-7 MONITOR GAIN SETTINGS

MM1 (CCR5.5)	MM0 (CCR5.4)	INTERNAL LINEAR GAIN BOOST (dB)
0	0	Normal operation (no boost)
0	1	20
1	0	26
1	1	32

Table 4-8 INTERNAL RX TERMINATION SELECT

RT1 (CCR5.1)	RT0 (CCR5.0)	INTERNAL RECEIVE TERMINATION CONFIGURATION
0	0	Internal receive-side termination disabled
0	1	Internal receive-side 120 ohm enabled
1	0	Internal receive-side 100 ohm enabled
1	1	Internal receive-side 75 ohm enabled

Table 4-9 MCLK SELECTION

MCLK	JAMUX (CCR1.3)	ETS (CCR1.7)
2.048MHz	0	0
2.048MHz	1	1
1.544MHz	0	1

Page 14 092899

Figure 4-1 **PARALLEL PORT MODE PINOUT (BIS1 = 0, BIS0 = 1 or 0)**

		4	43	42	41	40	39	38	37	36	35	34			
		PBTS	TCLK	TNEG	TPOS	RCLK	RNEG	RPOS	TRING	VDD	VSS	Ħ			
1	CS*								u,				BIS1	33	tie low
2	RD (D	S)											BIS0	32	tie low (MUX) or high (non-MUX)
3	WR* (R/W*)										- 1	BPCLK	31	
4	ALE (AS)											MCLK	30	
5	NA				_	_	214	-					HRST*	29	
6	NA							Port	t				RRING	28	
7	A4			Operation (Note: tie all NA pins low)						RTIP	27				
8	А3												TEST	26	
9	A2											RCL	/LOTC	25	
10) A1												PBEO	24	
11	1 A0	AD 7	AD(ΑD	ΑD	AD	AD2	AD1	ADC		_		INT*	23	
		AD7/D7	AD6/D6	AD5/D5	AD4/D4	AD3/D3	AD2/D2	AD1/D1	AD0/D0	MSV	VDD	VSS			
		12	13	4	15	16	17	18	19	20	21	22			

Figure 4-2 **SERIAL PORT MODE PINOUT (BIS1 = 1, BIS0 = 0)**

tie low 4 39 41 42 37 38 36 3 3 RPOS RNEG RCLK TPOS TNEG VSS VDD 1 CS* BIS1 33 tie high 2 NA BIS0 32 tie low 3 NA BPCLK 31 4 NA MCLK 30 DS2148 5 SCLK HRST* 29 **Serial Port** RRING 28 6 SDI Operation 7 SDO RTIP 27 (Note: tie all NA pins low) 8 ICES TEST 26 9 OCES RCL/LOTC 25 PBEO 24 10 NA 11 NA INT* 23 VSS 19 18 11 11 13

Page 15 092899

37 36 35 34 42 4 40 38 TRING TPOS RNEG RT0 RCLK Ħ **TCFK** ΥDD SSV 1 EGL BIS1 33 tie high 2 ETS BIS0 32 tie high 3 NRZE BPCLK 31 4 SCLKE MCLK 30 **DS2148** 5 L2 HRST* 29 Hardware 6 L1 RRING 28 Operation RTIP 27 7 L0 8 DJA TEST 26 9 JAMUX RCL 25 10 JAS PBEO 24 11 HBE RT1 23 MMO MM1 MSA TX1 B SSA ŦPD 19 17 13 14 5 16 21

Figure 4-3 **HARDWARE MODE PINOUT** (**BIS1 = 1, BIS0 = 1**)

4.1 Hardware Mode

In hardware mode (BIS1 = 1, BIS0 = 1), pins 1-19, 23, 25, 31, and 44 are redefined to be used for initializing the DS2148. BPCLK (pin 31) defaults to a 16.384MHz output when in hardware mode. The RCL/LOTC (pin 25) is designated to RCL when in hardware mode. JABDS (CCR4.2) defaults to logic 0. The RHBE (CCR2.3) and THBE (CCR2.2) control bits are combined and controlled by HBE at pin 11 while the RSCLKE (CCR5.3) and TSCLKE (CCR5.2) bits are combined and controlled by SCLKE at pin 4. TCES (CCR2.1) and RCES (CCR2.0) are combined and controlled by CES at pin 12. The transmitter functions are combined and controlled by TX1 (pin 15) and TX0 (pin 14). The loopback functions are controlled by LOOP1 (pin 17) and LOOP0 (pin 16). All other control bits default to the logic 0 setting.

5. REGISTER MEMORY MAP & PORT OPERATION

5.1 Register Map

Table 5-1 **REGISTER MAP**

ACRONYM	REGISTER NAME	R/W	PARALLEL PORT MODE	SERIAL PORT MODE See notes 2 - 5 (msb) (lsb)
CCR1	Common Control Register 1	R/W	00h	B000 000A
CCR2	Common Control Register 2	R/W	01h	B000 001A
CCR3	Common Control Register 3	R/W	02h	B000 010A
CCR4	Common Control Register 4	R/W	03h	B000 011A
CCR5	Common Control Register 5	R/W	04h	B000 100A
CCR6	Common Control Register 6	R/W	05h	B000 101A
SR	Status Register	R	06h	B000 110A
IMR	Interrupt Mask Register	R/W	07h	B000 111A
RIR1	Receive Information Register 1	R	08h	B001 000A
RIR2	Receive Information Register 2	R	09h	B001 001A
IBCC	In-Band Code Control Register	R/W	0Ah	B001 010A
TCD1	Transmit Code Definition Register 1	R/W	0Bh	B001 011A
TCD2	Transmit Code Definition Register 2	R/W	0Ch	B001 100A
RUPCD1	Receive Up Code Definition Register 1	R/W	0Dh	B001 101A
RUPCD2	Receive Up Code Definition Register 2	R/W	0Eh	B001 110A
RDNCD1	Receive Down Code Definition Register 1	R/W	0Fh	B001 111A
RDNCD2	Receive Down Code Definition Register 2	R/W	10h	B010 000A
ECR1	Error Count Register 1	R	11h	B010 001A
ECR2	Error Count Register 2	R	12h	B010 010A
TEST1	Test 1	R/W	13h	B010 011A
TEST2	Test 2	R/W	14h	B010 100A
TEST2	Test 3	R/W	15h	B010 101A
-	-	-	See note 1	-

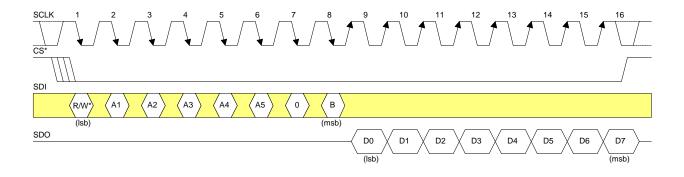
Notes:

- 1. Register addresses 16h to 1Fh do not exist.
- 2. In the Serial Port Mode, the LSB is on the right hand side.
- 3. In the Serial Port Mode, data is read and written LSB first.
- 4. In the Serial Port Mode, the A bit (the LSB) determines whether the access is a read (A = 1) or a write (A = 0).
- 5. In the Serial Port Mode, the B bit (the MSB) determines whether the access is a burst access (B = 1) or a single register access (B = 0).

5.2 Parallel Port Operation

When using the parallel interface on the DS2148 (BIS1 = 0) the user has the option for either multiplexed bus operation (BIS1 = 0, BIS0 = 0) or non-multiplexed bus operation (BIS1 = 0, BIS0 = 1). The DS2148 can operate with either Intel or Motorola bus timing configurations. If the PBTS pin is tied low, Intel timing will be selected; if tied high, Motorola timing will be selected. All Motorola bus signals are listed in parenthesis (). See the timing diagrams in Section 12 for more details.

5.3 Serial Port Operation


Setting BIS1 = 1 and BIS0 = 0 enables the serial bus interface on the DS2148. Port read/write timing is unrelated to the system transmit and receive timing, allowing asynchronous reads or writes by the host. See Section 12 for the AC timing of the serial port. All serial port accesses are LSB first. See Figure 5-1, Figure 5-2, Figure 5-3, and Figure 5-4 for more details.

Reading or writing to the internal registers requires writing one address/command byte prior to transferring register data. The first bit written (LSB) of the address/command byte specifies whether the access is a read (1) or a write (0). The next 5 bits identify the register address. The next bit is reserved and must be set to 0 for proper operation. The last bit (MSB) of the address/command byte enables the burst mode when set to 1. The burst mode causes all registers to be consecutively written or read.

All data transfers are initiated by driving the CS* input low. When Input Clock-Edge Select (ICES) is low, input data is latched on the rising edge of SCLK and when ICES is high, input data is latched on the falling edge of SCLK. When Output Clock-Edge Select (OCES) is low, data is output on the falling edge of SCLK and when OCES is high, data is output on the rising edge of SCLK. Data is held until the next falling or rising edge. All data transfers are terminated if the CS* input transitions high. Port control logic is disabled and SDO is tri-stated when CS* is high.

Figure 5-1 SERIAL PORT OPERATION MODE 1

ICES = 1 (sample SDI on the falling edge of SCLK)
OCES = 1 (update SDO on rising edge of SCLK)

Figure 5-2 SERIAL PORT OPERATION MODE 2

ICES = 1 (sample SDI on the falling edge of SCLK)
OCES = 0 (update SDO on falling edge of SCLK)

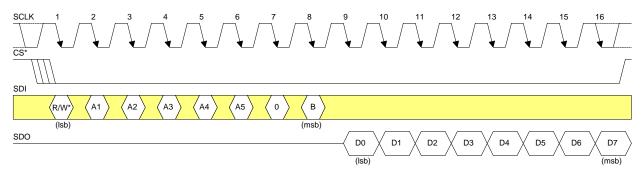


Figure 5-3 **SERIAL PORT OPERATION MODE 3**

ICES = 0 (sample SDI on the rising edge of SCLK) OCES = 0 (update SDO on falling edge of SCLK)

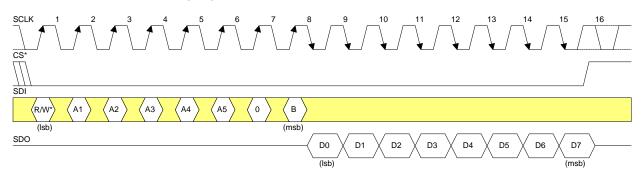
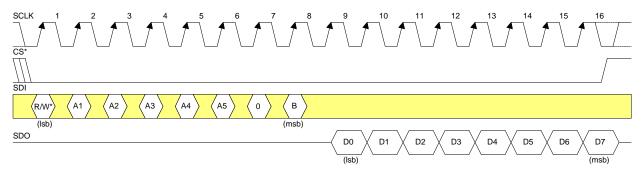



Figure 5-4 SERIAL PORT OPERATION MODE 4

ICES = 0 (sample SDI on the rising edge of SCLK)
OCES = 1 (update SDO on rising edge of SCLK)

6. CONTROL REGISTERS

CCR1 (00H): COMMON CONTROL REGISTER 1

(MSB)							(LSB)
ETS	NRZE	RCLA	ECUE	JAMUX	TTOJ	TTOR	LOTCMC
SYMBOL	POSITION	NAME A	AND DESCE	RIPTION			
ETS	CCR1.7	E1/T1 S 0 0 = E1 1 = T1	elect.				
NRZE	CCR1.6	1 = NRZ	lar data at RP data at RPO	OS/RNEG and S and TPOS or eives a BPV, C	TNEG; RNE		ositive going
RCLA	CCR1.5	0 = RCL	declared upo	s Alternate Cri on 255 (E1) or 1 on 2048 (E1) or	92 (T1) conse		OS
ECUE	CCR1.4	Error Cocycle to l counters. and 1296	ounter Upda oad the error The user muns for T1) be	te Enable. A counter registe ust wait a mining fore reading the ection 6 for deta	0 to 1 transitions with the late num of two classes error count in	on forces the test counts an locks cycles (next clock d reset the 976ns for E1
JAMUX	CCR1.3	0 = JACI	LK sourced fi	UX. Controls the com MCLK (2.0 com internal PL	048MHz or 1.	544MHz at N	
TTOJ	CCR1.2	TCLK to $0 = \text{disab}$ $1 = \text{enabl}$	led	nternally connec	cts TCLK to J	JACLK. Seel	Figure 3-3.
TTOR	CCR1.1	TCLK to $0 = \text{disab}$ $1 = \text{enabl}$	led	ernally connect	s TCLK to R	CLK. SeeFig	gure 3-3
LOTCMC	CCR1.0	logic sho SeeFigur 0 = do no	uld switch to e 3-3. ot switch to J	ock Mux Cont JACLK if the ACLK if TCLK if TCLK stops	TCLK input s		

Table 6-1 MCLK SELECTION

MCLK	JAMUX (CCR1.3)	ETS (CCR1.7)
2.048MHz	0	0
2.048MHz	1	1
1.544MHz	0	1

Page 20 092899

CCR2 (01H): COMMON CONTROL REGISTER 2

(MSB)							(LSB)		
P25S	n/a	SCLD	CLDS	RHBE	THBE	TCES	RCES		
SYMBOL	POSITION	NAME A	AND DESCR	RIPTION					
P25S	CCR2.7	0 = togg	Pin 25 Select. Forced to logic 0 in hardware mode. 0 = toggles high during a Receive Carrier Loss condition 1 = toggles high if TCLK does not transition for at least 5μs						
-	CCR2.6			d be set to zer					
SCLD	CCR2.5	limiter. 0 = enab	ircuit Limit I le 50mA curro ble 50mA curr		= 0). Control	s the 50mA (1	rms) current		
CLDS	CCR2.4	Custom operation CCR4.5 wave at this bit is will force their nor normal of	Line Driver n of the transn = CCR4.6 = C the TTIP and to s set to a one a e TTIP and T mal push-pull	Select. Settin nit line driver. CCR4.7 = 0, tl TRING outpu and CCR4.5 = RING outputs operation. T the device. C	When this benen the device ts instead of a CCR4.6 = CC to become ophis bit should	it is set to a or will generated normal wave $CR4.7 \neq 0$, the oen drain drive l be set to zer	ne and a square form. When on the device ers instead of or for		
RHBE	CCR2.3	Receive $0 = \text{enab}$	HDB3/B8ZS le HDB3 (E1)	Enable.) / B8ZS (T1)) / B8ZS (T1)					
THBE	CCR2.2	0 = enab	Transmit HDB3/B8ZS Enable. 0 = enable HDB3 (E1) / B8ZS (T1) 1 = disable HDB3 (E1) / B8ZS (T1)						
TCES	CCR2.1	and TNE 0 = samp 1 = samp	Transmit Clock Edge Select. Selects which TCLK edge to sample TPOS and TNEG. 0 = sample TPOS and TNEG on falling edge of TCLK 1 = sample TPOS and TNEG on rising edge of TCLK						
RCES	CCR2.0	and RNE 0 = upda	EG. te RPOS and	Select. Select RNEG on risi RNEG on fall	ng edge of RO	CLK	ate RPOS		

Page 21 092899

CCR3 (02H): COMMON CONTROL REGISTER 3

(MSB)							(LSB)		
TUA1	ATUA1	TAOZ	TPRBSE	TLCE	LIRST	IBPV	IBE		
SYMBOL	POSITION	NAME A	ND DESCRIP	PTION					
TUA1	CCR3.7	device will must be se this data p 0 = transm	Unframed Al I transmit an al it to a one to al attern is alway it all ones at T it data normal	ll ones pattern low the device s timed off of TIP and TRI	n on power-up te to transmit of the JACLK (or device rese lata. The trans	et. This bit smission of		
ATUA1	CCR3.6	Automatic unframed (RCL) cor	1 = transmit data normally Automatic Transmit Unframed All Ones. Automatically transmit an unframed all ones pattern at TTIP and TRING during a receive carrier loss (RCL) condition. 0 = disabled						
TAOZ	CCR3.5	Transmit Alternate Ones and Zeros. Transmit a101010 pattern at TTIP and TRING. The transmission of this data pattern is always timed off of TCLK (see Figure 3-1). 0 = disabled 1 = enabled							
TPRBSE	CCR3.4	Transmit TTIP and 0 0 = disable 1 = enable	ed	. Transmit a	2 ¹⁵ –1 (E1) or	a 2 ²⁰ -1 (T1) F	PRBS at		
TLCE	CCR3.3	Transmit Loop Code Enable. Enables the transmit side to transmit the loop up code in the Transmit Code Definition registers (TCD1 and TCD2). See Section 6 for details. 0 = disabled 1 = enabled							
LIRST	CCR3.2	internal re jitter atten	rface Reset. Set that resets to uator. Normal d set again for	the clock reco	overy state mad only toggled or	chine and rece	nters the		
IBPV	CCR3.1	Insert BP Violation been toggl consecutive	V. A 0 to 1 tr (BPV) to be in ed from a 0 to re ones to inser- ent error to be it	ansition on the serted into the a 1, the device t the BPV. T	his bit will cau te transmit data te waits for the This bit must be	stream. Once e next occurre	e this bit has nce of three		
IBE	CCR3.0	Insert Bit to be inser	Error. A 0 to ted into the transubsequent er	o 1 transition on the stranger of the stranger	on this bit will ream. This bit	must be clear			

6.1 Device Power-Up & Reset

The DS2148 will reset itself upon power-up setting all writeable registers to 00h and clear the status and information registers. CCR3.7 (TUA1) = 0 results in the LIU transmitting unframed all ones. After the power supplies have settled following power-up, initialize all control registers to the desired settings, then toggle the LIRST bit (CCR3.2). At anytime, the DS2148 can be reset to the default settings by bringing HRST* (pin 29) low (level triggered) or by powering down and powering up again.

Page 22 092899

(MSB)

TPD

(LSB)

CCR4 (03H): COMMON CONTROL REGISTER 4

L2	L1	L0	EGL	JAS	JABDS	DJA	TPD		
SYMBOL	POSITION	NAME A	ND DESCRII	PTION					
L2	CCR4.7	Line Build	Line Build Out Select Bit 2. Sets the transmitter build out; see Table 9-1 for						
		E1 and Ta	ble 9-2 for T1						
L1	CCR4.6	Line Build	d Out Select I	Bit 1. Sets the	transmitter b	uild out; see T	able 9-1 for		
		E1 and Ta	ble 9-2 for T1						
L0	CCR4.5	Line Build	l Out Select I	Bit 0. Sets the	transmitter b	uild out; see T	able 9-1 for		
		E1 and Ta	ble 9-2 for T1						
EGL	CCR4.4	Receive E	qualizer Gair	Limit. This	bit controls th	ne sensitivity of	of the		
		receive eq	ualizer. SeeTa	able 6-2.					
JAS	CCR4.3	Jitter Atte	enuator Selec	t.					
		0 = place t	he jitter attenu	ator on the re	ceive side				
		1 = place t	he jitter attenu	ator on the tra	ansmit side				
JABDS	CCR4.2	Jitter Atte	enuator Buffe	er Depth Selec	et.				
		0 = 128 bis	ts						
		1 = 32 bits	(use for delay	y sensitive app	lications)				
DJA	CCR4.1	Disable Ji	tter Attenuat	or.					

0 = jitter attenuator enabled 1 = jitter attenuator disabled **Transmit Power Down.**

0 = normal transmitter operation

Table 6-2 RECEIVE SENSITIVITY SETTINGS

CCR4.0

EGL (CCR4.4)	ETS (CCR1.7)	RECEIVE SENSITIVITY
0	0 (E1)	-12dB (short haul)
1	0 (E1)	-43dB (long haul)
1	1 (T1)	-30dB (limited long haul)
0	1 (T1)	-36dB (long haul)

1 = powers down the transmitter and tri-states the TTIP and TRING pins

Page 23 092899

CCR5 (04H): COMMON CONTROL REGISTER 5

(MSB)							(LSB)	
BPCS1	BPCS0	MM1	MM0	RSCLKE	TSCLKE	RT1	RT0	
SYMBOL	POSITION	NAME A	ND DESCR	IPTION				
BPCS1	CCR5.7	Back Pla	ne Clock Sel	ect 1. See Tab	ole 6-3 for deta	ails.		
BPCS0	CCR5.6	Back Pla	Back Plane Clock Select 0. See Table 6-3 for details					
MM1	CCR5.5	Monitor Mode 1. See Table 6-4.						
MM0	CCR5.4	Monitor	Monitor Mode 0. See Table 6-4.					
RSCLKE	CCR5.3	0 = disabl	e 2.048MHz	ion Clock Enacy synchronization	on receive mo			
TSCLKE	CCR5.2	Transmit $0 = \text{disabl}$	1 = enable 2.048MHz synchronization receive mode Transmit Synchronization Clock Enable. 0 = disable 2.048MHz transmit synchronization clock 1 = enable 2.048MHz transmit synchronization clock					
RT1	CCR5.1			1. See Table 6				
RT0	CCR5.0	Receive T	Termination (0. See Table 6	5-5 for details			

Table 6-3 BACK PLANE CLOCK SELECT

BPCS1 (CCR5.7)	BPCS0 (CCR5.6)	BPCLK FREQUENCY
0	0	16.384MHz
0	1	8.192MHz
1	0	4.096MHz
1	1	2.048MHz

Table 6-4 MONITOR GAIN SETTINGS

MM1	MM0	INTERNAL LINEAR GAIN
(CCR5.5)	(CCR5.4)	BOOST (dB)
0	0	Normal operation (no boost)
0	1	20
1	0	26
1	1	32

Table 6-5 INTERNAL RX TERMINATION SELECT

RT1 (CCR5.1)	RT0 (CCR5.0)	INTERNAL RECEIVE TERMINATION CONFIGURATION
0	0	Internal receive-side termination disabled
0	1	Internal receive-side 120 ohm enabled
1	0	Internal receive-side 100 ohm enabled
1	1	Internal receive-side 75 ohm enabled

CCR6 (05H): COMMON CONTROL REGISTER 6

(MSB)							(LSB)	
LLB	RLB	ARLBE	ALB	RJAB	ECRS2	ECRS1	ECRS0	
SYMBOL	POSITION	NAME AN	ND DESCRI	PTION				
LLB	CCR6.7	backed to to Data in the $0 = loopbacket$	he receive pa transmit path ck disabled	th passing thr	ough the jitter	mit data will b attenuator if it gure 3-1 for de	t is enabled.	
RLB	CCR6.6	clock/data through the	bopBack. In recovery circ itter attenua while data prefor details. ck disabled	uitry will be leator if it is ena	ooped back to bled. Data in	data output from the transmit position the receive passwill be ignore	ath passing ath will act	
ARLBE	CCR6.5	Automatic the device code progra (RUPCD1 RIR2.1 stat detected th Definition at which po automatic I action of th	e Remote Loo will automati ammed into the and RUPCD tus bit. Once the loop code properties (RI point it will for RLB circuitry are automatic in	cally go into really go into really go into really for a minimal in a RLB state or a RLB state or a RLB and Really for the device or can be reset by the remote loopba	remote loopbactoop Up Code I num of 5 second re, it will remain to the Received DNCD2) for a out of RLB are by toggling think ck circuitry is	When this bit in the when it detect the Definition Regulars and it will a sin in this state to Loop Down to a minimum of and clear RIR2. It is bit from a 1 logically OR' and RIR to occur	ects loop up isters also set the until it has Code 5 seconds 1. The to a 0. The ed with the	
ALB	CCR6.4	RLB (CCR6.6) control bit (i.e. either one can cause a RLB to occur). Analog LoopBack. In Analog Loopback (ALB), signals at TTIP and TRING will be internally connected to RTIP and RRING. The incoming signals, from the line, at RTIP and RRING will be ignored. The signals at TTIP and TRING will be transmitted as normal. See Figure 3-1for more details. $0 = \text{loopback disabled}$						
RJAB	CCR6.3	RCLK Jitt recovered of the BPCLK	1 = loopback enabled RCLK Jitter Attenuator Bypass. This control bit allows the receive recovered clock and data to bypass the jitter attenuation while still allowing the BPCLK output to use the jitter attenuator. See Figure 3-1 for details. 0 = disabled					
ECRS2	CCR6.2		· ·		Section 6.4 fo			
ECRS1	CCR6.1				Section 6.4 fo			
ECRS0	CCR6.0	Error Cou	nt Register S	Select 0. See	Section 6.4 fo	r details.		

Page 26 092899

7. STATUS REGISTERS

There are three registers that contain information on the current real time status of the device, Status Register (SR) and Receive Information Registers 1 & 2 (RIR1/RIR2). When a particular event has occurred (or is occurring), the appropriate bit in one of these three registers will be set to a one. Some of the bits in SR, RIR1, and RIR2 are latched bits and some are real time bits. The register descriptions below list which status bits are latched and which are real time bits. For latched status bits, when an event or an alarm occurs the bit is set to a one and will remain set until the user reads that bit. The bit will be cleared when it is read and it will not be set again until the event has occurred again. Two of the latched status bits (RUA1 & RCL) will remain set after reading if the alarm is still present.

The user will always precede a read of any of the three status registers with a write. The byte written to the register will inform the DS2148 which bits the user wishes to read and have cleared. The user will write a byte to one of these registers with a one in the bit positions to be read and a zero in the other bit positions. When a one is written to a bit location, that location will be updated with the latest information. When a zero is written to a bit position, that bit position will not be updated and the previous value will be held. A write to the status and information registers will be immediately followed by a read of the same register. The read result should be logically AND'ed with the mask byte that was just written and this value should be written back into the same register to insure that bit does indeed clear. This second write step is necessary because the alarms and events in the status registers occur asynchronously with respect to their access via the parallel port. This write—read—write scheme allows an external microcontroller or microprocessor to individually poll certain bits without disturbing the other bits in the register. This operation is key in controlling the DS2148 with higher—order software languages.

The bits in the SR register have the unique ability to initiate a hardware interrupt via the INT* output pin. Each of the alarms and events in the SR can be either masked or unmasked from the interrupt pin via the Interrupt Mask Register (IMR). The interrupts caused by the RCL, RUA1 and LOTC bits in SR act differently than the interrupts caused by the other status bits in SR. The RCL, RUA1 and LOTC bits will force the INT* pin low whenever they change state (i.e. go active or inactive). The INT* pin will be allowed to return high (if no other interrupts are present) when the user reads the alarm bit that caused the interrupt to occur even if the alarm is still present. The other status bits in SR can force the INT* pin low when they are set. The INT* pin will be allowed to return high (if no other interrupts are present) when the user reads the event bit that caused the interrupt to occur.

Table 7-1 RECEIVED ALARM CRITERIA

ALARM	E1/T1	SET CRITERIA	CLEAR CRITERIA
RUA1	E1	Less than 2 zeros in 2 frames (512 bits)	More than 2 zeros in 2 frames (512
			bits)
RUA1	T1	Over a 3ms window, 5 or less zeros are	Over a 3ms window, 6 or more
		received	zeros are received
RCL^1	E1	255 (or 2048) ² consecutive zeros received	In 255-bit times, at least 32 ones are
		(G.775)	received
RCL^1	T1	192 (or 1544) ² consecutive zeros are	14 or more ones out of 112 possible
		received	bit positions are received starting
			with the first one received

Note 1: Receive carrier loss (RCL) is also known as loss of signal (LOS) or Red Alarm in T1.

Note 2: See CCR1.5 for details.

SR (06H): STATUS REGISTER

(MSB)							(LSB)	
LUP	LDN	LOTC	RUA1	RCL	TCLE	TOCD	PRBSD	l

SYMBOL	POSITION	NAME AND DESCRIPTION
LUP	SR.7	Loop Up Code Detected. Set when the loop up code defined in registers
(latched)		RUPCD1 and RUPCD2 is being received. See Section 6 for details.
LDN	SR.6	Loop Down Code Detected. Set when the loop down code defined in
(latched)		registers RDNCD1 and RDNCD2 is being received. See Section 6 for details.
LOTC	SR.5	Loss of Transmit Clock. Set when the TCLK pin has not transitioned for
(real time)		5μsec (±2μsec). Will force the LOTC pin high.
RUA1	SR.4	Receive Unframed All Ones. Set when an unframed all ones code is
(latched)		received at RRING and RTIP. See Table 7-1 for details.
RCL	SR.3	Receive Carrier Loss. Set when a receive carrier loss condition exists at
(latched)		RRING and RTIP. See Table 7-1 for details.
TCLE	SR.2	Transmit Current Limit Exceeded. Set when the 50mA (rms) current
(real time)		limiter is activated whether the current limiter is enabled or not.
TOCD	SR.1	Transmit Open Circuit Detect. Set when the device detects that the TTIP
(real time)		and TRING outputs are open circuited.
PRBSD	SR.0	PRBS Detect. Set when the receive-side detects a 2 ¹⁵ -1 (E1) or a 2 ²⁰ -1 (T1)
(real time)		Pseudo Random Bit Sequence (PRBS).

Page 28 092899

IMR (07H): INTERRUPT MASK REGISTER

(MSB)							(LSB)	
LUP	LDN	LOTC	RUA1	RCL	TCLE	TOCD	PRBSD	
SYMBOL	POSITION	NAME AN	ND DESCRII	PTION				
LUP	IMR.7	Loop Up (0 = interrup 1 = interrup		d.				
LDN	IMR.6		n Code Detect of masked	cted.				
LOTC	IMR.5	Loss of Tr 0 = interrup	Loss of Transmit Clock. 0 = interrupt masked 1 = interrupt enabled					
RUA1	IMR.4	0 = interruj	Receive Unframed All Ones. 0 = interrupt masked 1 = interrupt enabled					
RCL	IMR.3	0 = interruption 0	Receive Carrier Loss. 0 = interrupt masked 1 = interrupt enabled					
TCLE	IMR.2	Transmit 0 0 = interrup 1 = interrup	ot masked	iter Exceeded	l.			
TOCD	IMR.1		Open Circuit ot masked	Detect.				
PRBSD	IMR.0	PRBS Det 0 = interrup 1 = interrup	ection. ot masked					

Page 29 092899

RIR1(08H): RECEIVE INFORMATION REGISTER 1

(MSB)							(LSB)
ZD	16ZD	HBD	RCLC	RUA1C	JALT	n/a	n/a
SYMBOL	POSITION	NAME A	ND DESCR	IPTION			
ZD	RIR1.7	Zero Det	ect. Set when	a string of at	least four (ET	S = 0) or eigh	t (ETS = 1)
(latched)		consecuti	ve zeros (rega	rdless of the le	ength of the st	ring) have bee	en received.
		Will be cl	eared when re	ead.			
16ZD	RIR1.6			Set when at lea			
(latched)			-	ng) have been			
HBD	RIR1.5			etect. Set whe	,	,	*
(latched)				d independent			
				oled. Will be cl	leared when re	ead. Useful fo	or
				e line coding.			
RCLC	RIR1.4			Clear. Set wh			the clear
(latched)				e 7-1. Will be			
RUA1C	RIR1.3			Ones Clear.			
(latched)				Will be cleared			
JALT	RIR1.2	Jitter Att	enuator Lim	i t Trip. Set w	hen the jitter	attenuator FII	O reaches
(latched)		to within	4 bits of its us	seful limit. Wi	ll be cleared v	hen read. Us	eful for
		debuggin	g jitter attenua	ation operation	l .		
n/a	RIR1.1	Not Assig	gned. Could l	be any value w	hen read.		
n/a	RIR1.0	Not Assig	gned. Could	be any value w	hen read.		

Page 30 092899

RIR2 (09H): RECEIVE INFORMAION REGISTER 2

(MSB)							(LSB)	
RL3	RL2	RL1	RL0	n/a	n/a	ARLB	SEC	
SYMBOL	POSITION	NAME A	AND DESCR	IPTION				
RL3 (real time)	RIR2.7	Receive 1	Level Bit 3. S	See Table 7-2.				
RL2 (real time)	RIR2.6	Receive 1	Level Bit 2. S	See Table 7-2.				
RL1 (real time)	RIR2.5	Receive 1	Level Bit 1. S	See Table 7-2.				
RL0 (real time)	RIR2.4	Receive 1	Receive Level Bit 0. See Table 7-2.					
n/a	RIR2.3	Not Assig	gned. Could l	oe any value w	hen read.			
n/a	RIR2.2	Not Assi	gned. Could l	oe any value w	hen read.			
ARLB (real time)	RIR2.1	the autom of a loop circuitry l more deta	Automatic Remote LoopBack Detected. This bit will be set to a one when the automatic Remote Loopback (RLB) circuitry has detected the presence of a loop up code for 5 seconds. It will remain set until the automatic RLB circuitry has detected the loop down code for 5 seconds. See Section 6 for more details. This bit will be forced low when the automatic RLB circuitry is disabled ($CCR6.5 = 0$).					
(latched)	NIX2.0	0 0		based on the R				

Page 31 092899

Table 7-2 **RECEIVE LEVEL INDICATION**

RL3	RL2	RL1	RL0	Receive Level (dB)
0	0	0	0	Greater than -2.5
0	0	0	1	-2.5 to -5.0
0	0	1	0	-5.0 to -7.5
0	0	1	1	-7.5 to -10.0
0	1	0	0	-10.0 to -12.5
0	1	0	1	-12.5 to −15.0
0	1	1	0	-15.0 to -17.5
0	1	1	1	-20.0 to -22.5
1	0	0	0	-22.5 to -25.0
1	0	0	1	-25.0 to -27.5
1	0	1	0	-27.5 to -30.0
1	0	1	1	-30.0 to -32.5
1	1	0	0	-32.5 to -35.0
1	1	0	1	-35.0 to -37.5
1	1	1	0	-37.5 to -40.0
1	1	1	1	-40.0 to -42.5

8. DIAGNOSTICS

8.1 In-Band Loop Code Generation & Detection

The DS2148 has the ability to generate and detect a repeating bit pattern that is from one to eight or sixteen bits in length. To transmit a pattern, the user will load the pattern to be sent into the Transmit Code Definition (TCD1 and TDC2) registers and select the proper length of the pattern by setting the TC0 and TC1 bits in the In-Band Code Control (IBCC) register. When generating a 1, 2, 4, 8, or 16 bit pattern both the transmit code registers (TDC1 and TDC2) must be filled with the proper code. Generation of a 1, 3, 5, or 7 bit pattern only requires TCD1 to be filled. Once this is accomplished, the pattern will be transmitted as long as the TLCE control bit (CCR3.3) is enabled. As an example, if the user wished to transmit the standard "loop up" code for Channel Service Units which is a repeating pattern of ...10000100001... then 80h would be loaded into TCD1 and the length would set using TC1 and TC0 in the IBCC register to 5 bits.

The DS2148 can detect two separate repeating patterns to allow for both a "loop up" code and a "loop down" code to be detected. The user will program the codes to be detected in the Receive Up Code Definition (RUPCD1 and RUPCD2) registers and the Receive Down Code Definition (RDNCD1 and RDNCD2) registers and the length of each pattern will be selected via the IBCC register. The DS2148 will detect repeating pattern codes with bit error rates as high as 1×10^{-2} . The code detector has a nominal integration period of 48 ms, hence, after about 48 ms of receiving either code, the proper status bit (LUP at SR.7 and LDN at SR.6) will be set to a one. Normally codes are sent for a period of 5 seconds. It is recommended that the software poll the DS2148 every 100 ms to 1000 ms until 5 seconds has elapsed to insure that the code is continuously present.

IBCC (0AH): IN-BAND CODE CONTROL REGISTER

(MSB)							(LSB)
TC1	TC0	RUP2	RUP1	RUP0	RDN2	RDN1	RDN0
SYMBOL	POSIT	ΓΙΟΝ Ν	JAME AND DE	SCRIPTION			
TC1	IBC	C.7	ransmit Code l	Length Defini	tion Bit 1. See	e Table 8-1	
TC0	IBC	С.6 Т	ransmit Code l	Length Defini	tion Bit 0. Sec	e Table 8-1	
RUP2	IBC	C.5 I	Receive Up Code	e Length Defin	nition Bit 2. S	See Table 8-2	
RUP1	IBC	C.4 I	Receive Up Code	e Length Defin	nition Bit 1. S	See Table 8-2	
RUP0	IBC	C.3 I	Receive Up Code	e Length Defin	nition Bit 0. S	SeeTable 8-2	
RDN2	IBC	C.2 I	Receive Down C	ode Length D	efinition Bit	2. See Table 8	-2
RDN1	IBC	C.1 I	Receive Down C	ode Length D	efinition Bit	1. See Table 8	-2
RDN0	IBC	C.0 I	Receive Down C	ode Length D	efinition Bit	0. SeeTable 8-	-2

Page 33 092899

Table 8-1 **TRANSMIT CODE LENGTH**

TC1	TC0	LENGTH SELECTED
0	0	5 bits
0	1	6 bits / 3 bits
1	0	7 bits
1	1	16 bits / 8 bits / 4 bits / 2 bits / 1 bits

Table 8-2 **RECEIVE CODE LENGTH**

RUP2/ RDN2	RUP1/ RDN1	RUP0/ RDN0	LENGTH SELECTED
0	0	0	1 bits
0	0	1	2 bits
0	1	0	3 bits
0	1	1	4 bits
1	0	0	5 bits
1	0	1	6 bits
1	1	0	7 bits
1	1	1	16 bits / 8 bits

TCD1 (0BH): TRANSMIT CODE DEFINITION REGISTER 1

(MSB)							(LSB)
C7	C6	C5	C4	C3	C2	C1	C0
SYMBOL	POSIT	TION N	AME AND DE	SCRIPTION			
C7	TCD	01.7 T 1	ransmit Code I	Definition Bit	7. First bit of	the repeating	pattern.
C6	TCD	01.6 T	ransmit Code I	Definition Bit	6.		
C5	TCD	01.5 T 1	ransmit Code I	Definition Bit	5.		
C4	TCD	01.4 T	ransmit Code I	Definition Bit	4.		
C3	TCD	01.3 T	ransmit Code I	Definition Bit	3.		
C2	TCD		ransmit Code I lected.	Definition Bit	2. A Don't Ca	are if a 5 bit le	ength is
C1	TCD	1.1 T	ransmit Code I lected.	Definition Bit	1. A Don't Ca	are if a 5 or 6	bit length is
C0	TCD	01.0 T	ransmit Code I selected.	Definition Bit	0. A Don't Ca	are if a 5, 6 or	7 bit length

TCD2 (0CH): TRANSMIT CODE DEFINITION REGISTER 2

(MSB)							(LSB)
C15	C14	C13	C12	C11	C10	C9	C8
SYMBOL	MBOL POSITION NAME AND DESCRIPTION						
C15	TCD	2.7 Tr	ansmit Code I	Definition Bit	15		
C14	TCD	TCD2.6 Transmit Code Definition Bit 14					
C13	TCD2.5 Transmit Code Definition Bit 13						
C12	TCD	TCD2.4 Transmit Code Definition Bit 12					
C11	TCD)2.3 Tr	ansmit Code I	Definition Bit	11		
C10	TCD)2.2 Tr	ansmit Code I	Definition Bit	10		
C9	TCD	2.1 Tr	ansmit Code I	Definition Bit	9		
C8	TCD	2.0 Tr	ansmit Code I	Definition Bit	8		

Page 35 092899

RUPCD1 (0DH): RECEIVE UP CODE DEFINITION REGISTER 1

(MSB)							(LSB)
C7	C6	C5	C4	C3	C2	C1	C0
SYMBOL	POSIT	TION NA	ME AND DE	SCRIPTION			
C7	RUPC	D1.7 Re	ceive Up Code	e Definition B	it 7. First bit o	of the repeatin	g pattern.
C6	RUPC		ceive Up Code	e Definition B	it 6. A Don't	Care if a 1 bit	length is
C5	RUPC		ceive Up Code elected.	e Definition B	it 5. A Don't	Care if a 1 or	2 bit length
C4	RUPC		ceive Up Code elected.	e Definition B	it 4. A Don't	Care if a 1 to	3 bit length
C3	RUPC		ceive Up Code elected.	e Definition B	it 3. A Don't	Care if a 1 to	4 bit length
C2	RUPC		ceive Up Code	e Definition B	it 2. A Don't	Care if a 1 to	5 bit length
C1	RUPC	D1.1 Re	ceive Up Code elected.	e Definition B	it 1. A Don't	Care if a 1 to	6 bit length
C0	RUPC	D1.0 Re	ceive Up Code elected.	e Definition B	it 0. A Don't	Care if a 1 to	7 bit length

RUPCD2 (0EH): RECEIVE UP CODE DEFINITION REGISTER 2

(MSB)							(LSB)
C15	C14	C13	C12	C11	C10	C9	C8
SYMBOL	IBOL POSITION NAME AND DESCRIPTION						
C15	RUPC	CD2.7 Rec	ceive Up Code	Definition B	it 15		
C14	RUPC	CD2.6 Receive Up Code Definition Bit 14					
C13	RUPC	CD2.5 Rec	Receive Up Code Definition Bit 13				
C12	RUPC	CD2.4 Rec	ceive Up Code	Definition B	it 12		
C11	RUPC	CD2.3 Rec	ceive Up Code	e Definition B	it 11		
C10	RUPC	CD2.2 Rec	ceive Up Code	e Definition B	it 10		
C9	RUPC	CD2.1 Rec	ceive Up Code	e Definition B	it 9		
C8	RUPC	CD2.0 Rec	ceive Up Code	e Definition B	it 8		

RDNCD1 (0FH): RECEIVE DOWN CODE DEFINITION REGISTER 1

(MSB)							(LSB)
C7	C6	C5	C4	C3	C2	C1	C0
SYMBOL	POSIT	TION NA	ME AND DE	SCRIPTION			
C7	RDNC	CD1.7 Re c	ceive Down C	ode Definition	n Bit 7. First b	oit of the repea	ating pattern.
C6	RDNC		ceive Down Cected.	ode Definition	n Bit 6. A Dor	n't Care if a 1	bit length is
C5	RDNC		ceive Down Cogth is selected.		n Bit 5. A Dor	n't Care if a 1	or 2 bit
C4	RDNC	RDNCD1.4 Receive Down Code Definition Bit 4. A Don't Care if length is selected.		n't Care if a 1	to 3 bit		
C3	RDNC		ceive Down Cogth is selected.		n Bit 3. A Dor	n't Care if a 1	to 4 bit
C2	RDNC		ceive Down Cogth is selected.		n Bit 2. A Dor	n't Care if a 1	to 5 bit
C1	RDNC		ceive Down Cogth is selected.		n Bit 1. A Dor	n't Care if a 1	to 6 bit
C0	RDNC		ceive Down Cogth is selected.		n Bit 0. A Dor	n't Care if a 1	to 7 bit

RDNCD2 (10H): RECEIVE DOWN CODE DEFINITION REGISTER 2

(MSB)							(LSB)
C15	C14	C13	C12	C11	C10	C9	C8
SYMBOL	POSI	TION N	AME AND DE	SCRIPTION			
C15	RDNO	CD2.7 R	Receive Down C	ode Definition	n Bit 15		
C14	RDNO	CD2.6 R	deceive Down C	ode Definition	n Bit 14		
C13	RDNO	CD2.5 R	eceive Down C	ode Definition	n Bit 13		
C12	RDNO	CD2.4 R	eceive Down C	ode Definition	n Bit 12		
C11	RDNO	CD2.3 R	eceive Down C	ode Definition	n Bit 11		
C10	RDNO	CD2.2 R	eceive Down C	ode Definition	n Bit 10		
C9	RDNO	CD2.1 R	Receive Down C	ode Definition	n Bit 9		
C8	RDNO	CD2.0 R	eceive Down C	ode Definition	n Bit 8		

Page 37 092899

8.2 Loopbacks

8.2.1 Remote Loopback (RLB)

When RLB (CCR6.6) is enabled, the DS2148 is placed into remote loopback. In this loopback, data from the clock/data recovery state machine will be looped back to the transmit path passing through the jitter attenuator if it is enabled. The data at the RPOS and RNEG pins will be valid while data presented at TPOS and TNEG will be ignored. See Figure 3-1 for details.

If the Automatic Remote Loop Back Enable (CCR6.5) is set to a one, the DS2148 will automatically go into remote loop back when it detects the loop up code programmed in the Receive Up Code Definition Registers (RUPCD1 and RUPCD2) for a minimum of 5 seconds. When the DS2148 detects the loop down code programmed in the Receive Loop Down Code Definition registers (RDNCD1 and RDNCD2) for a minimum of 5 seconds, the DS2148 will come out of remote loop back. The ARLB can also be disabled by setting ARLBE to a zero.

8.2.2 Local Loopback (LLB)

When LLB (CCR6.7) is set to a one, the DS2148 is placed into Local Loop Back. In this loopback, data on the transmit-side will continue to be transmitted as normal. TCLK and TPOS/TNEG will pass through the jitter attenuator (if enabled) and be output at RCLK and RPOS/RNEG. Incoming data from the line at RTIP and RRING will be ignored. If Transmit Unframed All Ones (CCR3.7) is set to a one while in LLB, TTIP and TRING will transmit all ones while TCLK and TPOS/TNEG will be looped back to RCLK and RPOS/RNEG. See Figure 3-1 for more details.

8.2.3 Analog Loopback (LLB)

Setting ALB (CCR6.4) to a one puts the DS2148 in Analog Loop Back. Signals at TTIP and TRING will be internally connected to RTIP and RRING. The incoming signals at RTIP and RRING will be ignored. The signals at TTIP and TRING will be transmitted as normal. See Figure 3-1 for more details.

8.2.4 Dual Loopback (DLB)

Setting both CCR6.7 and CCR6.6 to a one, LLB and RLB respectively, puts the DS2148 into Dual Loop Back operation. The TCLK and TPOS/TNEG signals will be looped back through the jitter attenuator (if enabled) and output at RCLK and RPOS/RNEG. Clock and data recovered from RTIP and RRING will be looped back to the transmit-side and output at TTIP and TRING. This mode of operation is not available when implementing hardware operation. See Figure 3-1 for more details.

Page 38 092899

8.3 PRBS Generation & Detection

Setting TPRBSE (CCR3.4) = 1 enables the DS2148 to transmit a 2^{15} -1 (E1) or a 2^{20} -1 (T1) Pseudo Random Bit Sequence (PRBS) depending on the ETS bit setting in CCR1.7. The receive-side of the DS2148 will always search for these PRBS patterns independent of CCR3.4. The PRBS Bit Error Output (PBEO) will remain high until the receiver has synchronized to one of the two patterns (64 bits received without an error) at which time PBEO will go low and the PRBSD bit in the Status Register (SR) will be set. Once synchronized, any bit errors received will cause a positive going pulse at PBEO, synchronous with RCLK. This output can be used with external circuitry to keep track of bit error rates during the PRBS testing. Setting CCR6.0 (ECRS) = 1 will allow the PRBS errors to be accumulated in the 16-bit counter in registers ECR1 and ECR2. The PRBS synchronizer will remain in sync until it experiences 6 bit errors or more within a 64 bit span. Both PRBS patterns comply with the ITU-T O.151 specifications.

8.4 Error Counter

Error Count Register 1 (ECR1) is the most significant word and ECR2 is the least significant word of a user selectable 16-bit counter that records incoming errors including BiPolar Violations (BPV), Code Violations (CV), Excessive Zero violations (EXZ) and/or PRBS Errors. See Table 8-3 and Table 8-4 and Figure 3-2 for details.

Table 8-3 **DEFINITION OF RECEIVED ERRORS**

ERROR	E1 OR T1	DEFINITION OF RECEIVED ERRORS
BPV	E1/T1	Two consecutive marks with the same polarity. Will ignore BPVs due to
		HDB3 and B8ZS zero suppression when CCR2.3 = 0. Typically used with
		AMI coding (CCR2.3 = 1). ITU-T O.161.
CV	E1	When HDB3 is enabled (CCR2.3 = 0) and the receiver detects two consecutive
		BPVs with the same polarity. ITU-T O.161.
EXZ	E1	When four or more consecutive zeros are detected.
EXZ	T1	When receiving AMI coded signals (CCR2.3 = 1), detection of 16 or more
		zeros or a BPV. ANSI T1.403 1999.
		When receiving B8ZS coded signals (CCR2.3 = 0), detection of 8 or more
		zeros or a BPV. ANSI T1.403 1999.
PRBS	E1/T1	A bit error in a received PRBS pattern. See section 8.3 for details.
		ITU-T O.151.

E1 or T1 (CCR1.7)	ECRS2 (CCR6.2)	ECRS1 (CCR6.1)	ECRS0 (CCR6.0)	RHBE (CCR2.3)	FUNCTION OF ECR COUNTERS/RNEG ¹
0	0	0	0	X	CVs
0	0	0	1	X	BPVs (HDB3 code words not counted)
0	0	1	0	X	CVs + EXZs
0	0	1	1	X	BPVs + EXZs
1	0	X	0	0	BPVs (B8ZS code words not counted)
1	0	X	1	0	BPVs + 8 EXZs
1	0	X	0	1	BPVs
1	0	X	1	1	BPVs + 16 EXZs
X	1	X	X	X	PRBS Errors ²

Table 8-4 FUNCTION OF ECRS BITS AND RNEG PIN

- 1) RNEG outputs error data only when in NRZ mode (CCR1.6 = 1)
- 2) PRBS errors will always be output at PBEO independent of ECR control bits and NRZ mode and will not be present at RNEG.

8.4.1 Error Counter Update

A transition of the ECUE (CCR1.4) control bit from 0 to 1 will update the ECR registers with the current values and reset the counters. ECUE must be set back to zero and another 0 to 1 transition must occur for subsequent reads/resets of the ECR registers. Note that the DS2148 can report errors at RNEG when in NRZ mode (CCR1.6 = 1) by outputting a pulse for each error occurrence. The counter saturates at 65,535 and will not rollover.

ECR1 (11H): UPPER ERROR COUNT REGISTER 1 ECR2 (12H): LOWER ERROR COUNT REGISTER 2

(MSB)							(LSB)	
E15	E14	E13	E12	E11	E10	E9	E8	ECR1
E7	E6	E5	E4	E3	E2	E1	E0	ECR2

SYMBOL	POSITION	NAME AND DESCRIPTION
E15	ECR1.7	MSB of the 16-bit error count
E0	ECR2.0	LSB of the 16-bit error count

8.5 Error Insertion

When IBPV (CCR3.1) is transitioned from a zero to a one, the device waits for the next occurrence of three consecutive ones to insert a BPV. IBPV must be cleared and set again for another BPV error insertion. See Figure 3-3 for details on the insertion of the BPV into the datasteam.

When IBE (CCR3.0) is transitioned from a zero to a one, the device will insert a logic error. IBE must be cleared and set again for another logic error insertion. See Figure 3-3 for details on the insertion of the logic error into the datasteam.

Page 40 092899

9. ANALOG INTERFACE

9.1 Receiver

The DS2148 contains a digital clock recovery system. The DS2148 couples to the receive E1 or T1 twisted pair (or coaxial cable in 75 ohm E1 applications) via a 1:1 transformer. See Table 9-3 and Table 9-4 for transformer details. Figure 9-1, Figure 9-2, and Figure 9-3 along with Table 9-1 and Table 9-2 show the receive termination requirements. The DS2148 has the option of using internal termination resistors.

The DS2148 is designed to be fully software-selectable for E1 and T1 without the need to change any external resistors for the receive-side. The receive-side will allow the user to configure the DS2148 for 75, 100, or 120 ohm receive termination by setting the RT1 (CCR5.1) and RT0 (CCR5.0) bits. When using the internal termination feature, the Rr resistors should be 60 ohms each. See Figure 9-1 for details. If external termination is required, RT1 and RT0 should be set to 0 and both Rr resistors in Figure 9-1 will need to be 37.5 ohms, 50 ohms, or 60 ohms each depending on the line impedance.

The resultant E1 or T1 clock derived from the 2.048/1.544 PLL (JACLK in Figure 3-1) is internally multiplied by 16 via another internal PLL and fed to the clock recovery system. The clock recovery system uses the clock from the PLL circuit to form a 16 times oversampler which is used to recover the clock and data. This oversampling technique offers outstanding performance to meet jitter tolerance specifications shown in Figure 9-6.

Normally, the clock that is output at the RCLK pin is the recovered clock from the E1 AMI/HDB3 or T1 AMI/B8ZS waveform presented at the RTIP and RRING inputs. When no signal is present at RTIP and RRING, a Receive Carrier Loss (RCL) condition will occur and the RCLK will be derived from the JACLK source. See Figure 3-1. If the jitter attenuator is placed in the receive path (as is the case in most applications), the jitter attenuator restores the RCLK to an approximate 50% duty cycle. If the jitter attenuator is either placed in the transmit path or is disabled, the RCLK output can exhibit slightly shorter high cycles of the clock. This is due to the highly oversampled digital clock recovery circuitry. See the Receive AC Timing Characteristics in Section 8 for more details.

The receive-side circuitry also contains a clock synthesizer which outputs a user configurable clock (up to 16.384MHz) synthesized to RCLK at BPCLK (pin 31). See Table 6-3 for details on output clock frequencies at BPCLK. In hardware mode, BPCLK defaults to a 16.384MHz output.

The DS2148 has a bypass mode for the receive side clock and data. This allows the BPCLK to be derived from RCLK after the jitter attenuator while the clock and data presented at RCLK, RPOS, and RNEG go unaltered. This is intended for applications where the receive side jitter attenuation will be done after the LIU. Setting RJAB (CCR6.3) to a logic 1 will enable the bypass. Be sure that the jitter attenuator is in the receive path (CCR4.3 = 0). See Figure 3-1 for details.

The DS2148 will report the signal strength at RTIP and RRING in 2.5dB increments via RL3-RL0 located in the Receive Information Register 2. This feature is helpful when trouble shooting line performance problems. See Table 7-2 for details.

Monitor applications in both E1 and T1 require various flat gain settings for the receive-side circuitry. The DS2148 can be programmed to support these applications via the Monitor Mode control bits MM1 and MM0. When the monitor modes are enabled, the receiver will tolerate normal line loss up to –6dB. See Table 6-4 for details.

9.2 Transmitter

The DS2148 uses a set of laser-trimmed delay lines along with a precision Digital-to-Analog Converter (DAC) to create the waveforms that are transmitted onto the E1 or T1 line. The waveforms created by the DS2148 meet the latest ETSI, ITU, ANSI, and AT&T specifications. The user will select which waveform is to be generated by setting the ETS bit (CCR1.7) for E1 or T1 operation, then programming the L2/L1/L0 bits in Common Control Register 4 for the appropriate application. See Table 9-1 and Table 9-2 for the proper L2/L1/L0 settings.

A 2.048MHz or 1.544MHz TTL clock is required at TCLK for transmitting data at TPOS and TNEG. ITU specification G.703 requires an accuracy of +/-50ppm for both T1 and E1. TR62411 and ANSI specs require an accuracy of +/- 32ppm for T1 interfaces. The clock can be sourced internally by RCLK or JACLK. See CCR1.2, CCR1.1, CCR1.0, and Figure 3-3 for details. Due to the nature of the design of the transmitter in the DS2148, very little jitter (less than 0.005 UIpp broadband from 10 Hz to 100 kHz) is added to the jitter present on TCLK. Also, the waveforms created are independent of the duty cycle of TCLK. The transmitter in the DS2148 couples to the E1 or T1 transmit twisted pair (or coaxial cable in some E1 applications) via a 1:1.36 or 1:2 step-up transformer depending on power supply and the application. In order for the device to create the proper waveforms, the transformer used must meet the specifications listed in Table 9-3 and Table 9-4.

The DS2148 has automatic short-circuit limiter which limits the source current to 50mA (rms) into a 1 ohm load. This feature can be disabled by setting the SCLD bit (CCR2.5) = 1. When the current limiter is activated, TCLE (SR.2) will be set even if short circuit limiter is disabled. The TPD bit (CCR4.0) will power-down the transmit line driver and tri-state the TTIP and TRING pins. The DS2148 can also detect when when the TTIP or TRING outputs are open circuited. When an open circuit is detected, TOCD (SR.1) will be set.

9.3 Jitter Attenuator

The DS2148 contains an onboard jitter attenuator that can be set to a depth of either 32 or 128 bits via the JABDS bit (CCR4.2). The 128-bit mode is used in applications where large excursions of wander are expected. The 32-bit mode is used in delay sensitive applications. The characteristics of the attenuation are shown in Figure 9-7. The jitter attenuator can be placed in either the receive path or the transmit path by appropriately setting or clearing the JAS bit (CCR4.3). Also, the jitter attenuator can be disabled (in effect, removed) by setting the DJA bit (CCR4.1). In order for the jitter attenuator to operate properly, a 2.048MHz or 1.544MHz clock must be applied at MCLK. ITU specification G.703 requires an accuracy of +/-50ppm for both T1 and E1. TR62411 and ANSI specs require an accuracy of +/- 32ppm for T1 interfaces. There is an onboard PLL for the jitter attenuator which will convert the 2.048 MHz clock to a 1.544 MHz rate for T1 applications. Setting JAMUX (CCR1.3) to a logic 0 bypasses this PLL. Onboard circuitry adjusts either the recovered clock from the clock/data recovery block or the clock applied at the TCLK pin to create a smooth jitter free clock which is used to clock data out of the jitter attenuator FIFO. It is acceptable to provide a gapped/bursty clock at the TCLK pin if the jitter attenuator is placed on the transmit side. If the incoming jitter exceeds either 120 UIpp (buffer depth is 128 bits) or 28 UIpp (buffer depth is 32 bits), then the DS2148 will divide the internal nominal 32.768MHz (E1) or 24.704MHz (T1) clock by either 15 or 17 instead of the normal 16 to keep the buffer from overflowing. When the device divides by either 15 or 17, it also sets the Jitter Attenuator Limit Trip (JALT) bit in the Receive Information Register 1 (RIR1).

9.4 G.703 Section 10 Synchronization Signal

The DS2148 is capable of receiving a 2.048 MHz square wave synchronization clock as specified in section 10 of ITU G.703. In order to use the DS2148 in this mode, set the Receive Synchronization Clock Enable (CCR5.3) = 1. The DS2148 can also transmit the 2.048 MHz square wave synchronization clock as specified in section 10 of G.703. In order to transmit the 2.048 MHz clock, set the Transmit Synchronization Clock Enable (CCR5.2) = 1.

Table 9-1 LINE BUILD OUT SELECT FOR E1 IN REGISTER CCR4 (ETS = 0)

L2	L1	L0	VDD	APPLICATION	N	RETURN LOSS	Rt
0	0	0	5V	75 ohm normal	1:1.36	NM	0 ohms
0	0	1	5V	120 ohm normal	1:1.36	NM	0 ohms
1	0	0	5V	75 ohm w/ high return loss	1:1.36	21dB	18 ohms
1	0	1	5V	120 ohm w/ high return loss	1:1.36	21dB	27 ohms
0	0	0	3.3V	75 ohm normal	1:2	NM	0 ohms
0	0	1	3.3V	120 ohm normal	1:2	NM	0 ohms
1	0	0	3.3V	75 ohm w/ high return loss	1:2	21dB	6.2 ohms
1	0	1	3.3V	120 ohm w/ high return loss	1:2	21dB	11.6 ohms

1. See Figure 9-1, Figure 9-2, and Figure 9-3.

Table 9-2 LINE BUILD OUT SELECT FOR T1 IN REGISTER CCR4 (ETS = 1)

L2	L1	L0	VDD	APPLICATION	N	RETURN LOSS	Rt
0	0	0	5V	DSX-1 (0 TO 133 FEET) / 0DB CSU	1:1.36	NM	0 ohms
0	0	1	5V	DSX-1 (133 to 266 feet)	1:1.36	NM	0 ohms
0	1	0	5V	DSX-1 (266 to 399 feet)	1:1.36	NM	0 ohms
0	1	1	5V	DSX-1 (399 to 533 feet)	1:1.36	NM	0 ohms
1	0	0	5V	DSX-1 (533 to 655 feet)	1:1.36	NM	0 ohms
1	0	1	5V	-7.5dB CSU	1:1.36	NM	0 ohms
1	1	0	5V	-15dB CSU	1:1.36	NM	0 ohms
1	1	1	5V	-22.5dB CSU	1:1.36	NM	0 ohms
0	0	0	3.3V	DSX-1 (0 TO 133 FEET) / 0DB CSU	1:2	NM	0 ohms
0	0	1	3.3V	DSX-1 (133 to 266 feet)	1:2	NM	0 ohms
0	1	0	3.3V	DSX-1 (266 to 399 feet)	1:2	NM	0 ohms
0	1	1	3.3V	DSX-1 (399 to 533 feet)	1:2	NM	0 ohms
1	0	0	3.3V	DSX-1 (533 to 655 feet)	1:2	NM	0 ohms
1	0	1	3.3V	-7.5dB CSU	1:2	NM	0 ohms
1	1	0	3.3V	-15dB CSU	1:2	NM	0 ohms
1	1	1	3.3V	-22.5dB CSU	1:2	NM	0 ohms

Notes:

1. See Figure 9-1, Figure 9-2, and Figure 9-3.

Page 43 092899


Table 9-3 TRANSFORMER SPECIFICATIONS FOR 5V OPERATION

SPECIFICATION	RECOMMENDED VALUE
Turns Ratio 5V Applications	1:1(receive) and 1:1.36(transmit) +/-2%
Primary Inductance	600μH minimum
Leakage Inductance	1.0μH maximum
Intertwinding Capacitance	40 pF maximum
Transmit Transformer DC Resistance	
Primary (Device Side)	1.2 Ohms maximum
Secondary	1.2 Ohms maximum
Receive Transformer DC Resistance	
Primary (Device Side)	1.2 Ohms maximum
Secondary	1.2 Ohms maximum

Table 9-4 TRANSFORMER SPECIFICATIONS FOR 3.3V OPERATION

SPECIFICATION	RECOMMENDED VALUE
Turns Ratio 3.3V Applications	1:1(receive) and 1:2(transmit) +/-2%
Primary Inductance	600μH minimum
Leakage Inductance	1.0μH maximum
Intertwining Capacitance	40 pF maximum
Transmit Transformer DC Resistance	
Primary (Device Side)	1.0 Ohms maximum
Secondary	2.0 Ohms maximum
Receive Transformer DC Resistance	
Primary (Device Side)	1.2 Ohms maximum
Secondary	1.2 Ohms maximum

Figure 9-1 **BASIC INTERFACE**

- 1. All resistor values are +/- 1%.
- 2. In E1 applications, the Rt resistors are used to increase the transmitter return loss (seeTable 9-1). No return loss is required for T1 applications.
- 3. The Rr resistors should be set to 60 ohms each if the internal receive-side termination feature is enabled. When this feature is disabled, Rr = 37.5 ohms for 75 ohm or 60 ohms for 120 ohm E1 systems, or 50 ohms for 100 ohm T1 lines.
- 4. See Table 9-1 and Table 9-2 for the appropriate transmit transformer turns ratio (N).

+VDD D1 D2 **DS2148** +VDD (optional) Fuse Rt TTIP VDD (21) 0.47uF **Transmit** VSS (20) (non-polarized) Line C1 68uF **TRING** ∨√ Rt VDD (36) Fuse Rр 0.1uF N·1 D3 VSS (35) (larger winding toward the network) 10uF +VDD D5 D6 Rp **MCLK** 2.048MHz RTIP (this clock can also Receive be 1.544MHz for T1 Line C2 **RRING** only applications) Fuse Rр (optional) 60 D7 D8 60

Figure 9-2 PROTECTED INTERFACE USING INTERNAL RECEIVE TERMINATION

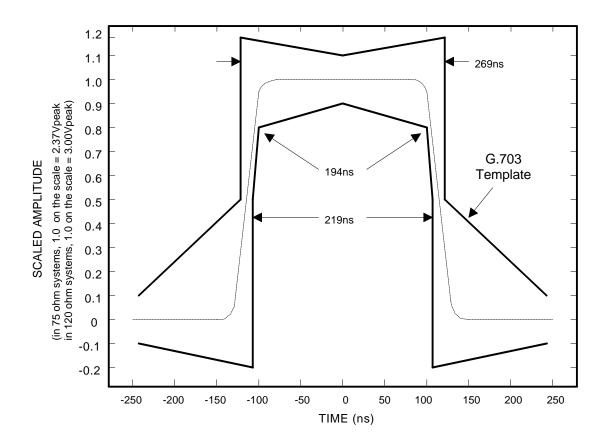

- 1. All resistor values are +/- 1%.
- 2. C1 = C2 = 0.1 uF.
- 3. S is a 6V transient suppresser.
- 4. D1 to D8 are Schottky diodes.
- 5. The fuses are optional to prevent AC power line crosses from compromising the transformers.
- 6. Rp resistors exist to keep the Fuses from opening during a surge. If they are used, then the 60 ohm receive termination resistance must be adjusted to match the line impedance.
- 7. The Rt resistors are used to increase the transmitter return loss (see Table 9-1). No return loss is required for T1 applications.
- 8. The transmit transformer turns ratio (N) would be 1:1.36 for 5V operation or 1:2 for 3.3V operation.
- 9. The 68µF is used to keep the local power plane potential within tolerance during a surge.

Figure 9-3 PROTECTED INTERFACE USING EXTERNAL RECEIVE TERMINATION

- 1. All resistor values are +/- 1%.
- 2. C1 = 0.1 uF.
- 3. S is a 6V transient suppresser.
- 4. D1 to D4 are Schottky diodes.
- 5. The fuses are optional to prevent AC power line crosses from compromising the transformers.
- 6. Rp resistors exist to keep the Fuses from opening during a surge. If they are used, then Rr must be adjusted to match the line impedance.
- 7. Rr = 37.5 ohms for 75 ohm or 60 ohms for 120 ohm E1 systems, or 50 ohms for 100 ohm T1 lines.
- 8. The Rt resistors are used to increase the transmitter return loss (see Table 9-1). No return loss is required for T1 applications.
- 9. The transmit transformer turns ratio (N) would be 1:1.36 for 5V operation or 1:2 for 3.3V operation.
- 10. The 68µF is used to keep the local power plane potential within tolerance during a surge.

Figure 9-4 **E1 TRANSMIT PULSE TEMPLATE**

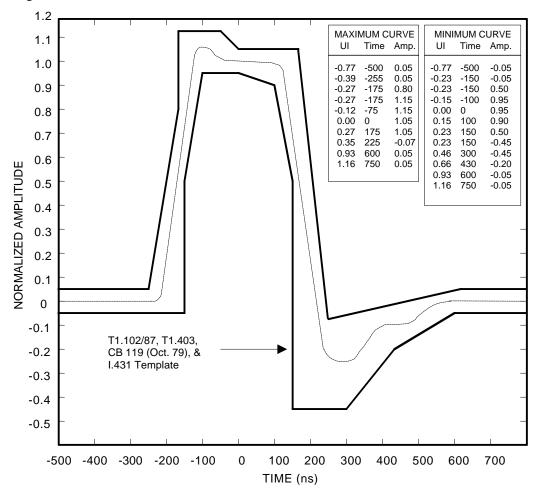


Figure 9-5 T1 TRANSMIT PULSE TEMPLATE

Page 49 092899

Figure 9-6 **JITTER TOLERANCE**

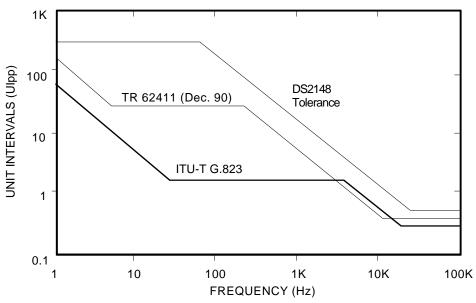
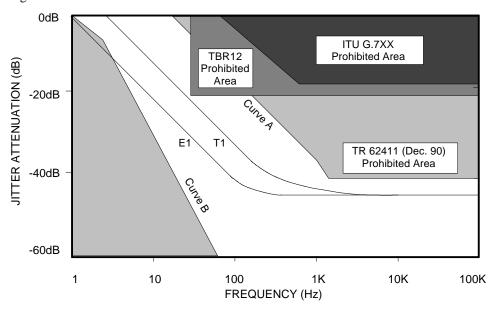



Figure 9-7 **JITTER ATTENUATION**

10. DS21Q48 QUAD LIU

The DS21Q48 is a quad version of the DS2148G utilizing CABGA on carrier packaging technology. The 4 LIUs are controlled via the parallel port mode. Serial and Hardware mode are unavailable in this package.

Table 10-1 DS21Q48 PIN ASSIGNMENT

DS21Q48 PIN#	I/O	Parallel Port Mode
J1	I	Connect to VSS
K3	I	Connect to VSS
J2	I	RD*(DS*)
H1	I	WR*(R/W*)
K2	I	ALE(AS)
K1	I/O	A4
L1	I	A3
H11	I	A2
H12	I	A1
G12	I	A0
J10	I/O	D7/AD7
H10	I/O	D6/AD6
G11	I/O	D5/AD5
J9	I/O	D4/AD4
E3	I/O	D3/AD3
D4	I/O	D2/AD2
F3	I/O	D1/AD1
D5	I/O	D0/AD0
G5	I	VSM
K9	I/O	INT*
K7	I	TEST
L9	I	HRST*
J6	I	MCLK
L7	I	BIS0
M8	I	BIS1
M12	I	PBTS
J3	I	CS*1
D3	I	CS*2
D10	I	CS*3
K10	I	CS*4
K5	0	PBEO1
G3	O	PBEO2
E10	0	PBEO3
K8	0	PBEO4
L6	0	RCL/LOTC1
D7	0	RCL/LOTC2
F9	0	RCL/LOTC3
J7	O	RCL/LOTC4
A1	I	RTIP1
A4	I	RTIP2
A7	I	RTIP3

A 10	т	DITIDA
A10	I	RTIP4
B2	I	RRING1
B5	I	RRING2
B8	I	RRING3
B11	I	RRING4
H4	0	BPCLK1
D6	0	BPCLK2
F10	0	BPCLK3
L8	0	BPCLK4
A2	0	TTIP1
A5	0	TTIP2
A8	0	TTIP3
A11	0	TTIP4
B3	0	TRING1
B6	0	TRING2
B9	0	TRING3
B12	0	TRING4
K4	0	RPOS1
E1	0	RPOS2
D11	0	RPOS3
K11	0	RPOS4
G2	O	RNEG1
E2	O	RNEG2
F11	0	RNEG3
M10	0	RNEG4
Н3	O	RCLK1
F1	0	RCLK2
E11	O	RCLK3
L11	O	RCLK4
G1	I	TPOS1
F2	I	TPOS2
E12	I	TPOS3
M11	I	TPOS4
H2	I	TNEG1
M1	I	TNEG2
D12	I	TNEG3
K12	I	TNEG4
M2	I	TCLK1
L2	I	TCLK2
F12	I	TCLK3
L12	I	TCLK4
J5	-	VDD1
D2	-	VDD2
G9	-	VDD3
M9	-	VDD4
L5	-	VDD1
E4	-	VDD2
D8	-	VDD3
Ј8	-	VDD4
J4	-	VSS1
D1	-	VSS2

E9	-	VSS3
L10	-	VSS4
M4	-	VSS1
F4	-	VSS2
D9	-	VSS3
Н9	-	VSS4

Figure 10-1 **BGA** 12 x 12 PIN LAYOUT

	1	2	3	4	5	6	7	8	9	10	11	12
Α	RTIP 1	TTIP 1	NC	RTIP 2	TTIP 2	NC	RTIP 3	TTIP 3	NC	RTIP 4	TTIP 4	NC
В	NC	RRING 1	TRING 1	NC	RRING 2	TRING 2	NC	RRING 3	TRING 3	NC	RRING 4	TRING 4
С	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC	NC
D	VSS 2	VDD 2	CS* 2	D2/ AD2	D0/ AD0	BPCLK 2	RCL/ LOTC2	VDD 3	VSS 3	CS* 3	RPOS 3	TNEG 3
E	RPOS 2	RNEG 2	D3/ AD3	VDD 2					VSS 3	PEBO 3	RCLK 3	TPOS 3
F	RCLK 2	TPOS 2	D1/ AD1	VSS 2					RCL/ LOTC3	BPCLK 3	RNEG 3	TCLK 3
G	TPOS 1	RNEG 1	PEBO 2		VSM				VDD 3		D5/ AD5	A0
н	WR* (R/W*)	TNEG 1	RCLK 1	BPCLK 1					VSS 4	D6/ AD6	A2	A1
J	See Note 2	RD* (DS*)	CS* 1	VSS 1	VDD 1	MCLK	RCL/ LOTC4	VDD 4	D4/ AD4	D7/ AD7		
К	A4	ALE (AS)	See Note 2	RPOS 1	PEBO 1		TEST	PEBO 4	INT*	CS* 4	RPOS 4	TNEG 4
L	А3	TCLK 2			VDD 1	RCL/ LOTC1	BIS0	BPCLK 4	HRST*	VSS 4	RCLK 4	TCLK 4
M	TNEG 2	TCLK 1		VSS 1				BIS1	VDD 4	RNEG 4	TPOS 4	PBTS

- 1. Shaded areas are signals common to all four devices 2. Connect to VSS.

11. DC CHARACTERISTICS

ABSOLUTE MAXIMUM RATINGS*

Voltage on Any Pin Relative to Ground -1.0V to +6.0V Operating Temperature for DS2148TN $-40^{\circ}\text{C to } +85^{\circ}\text{C}$ Storage Temperature $-55^{\circ}\text{C to } +125^{\circ}\text{C}$ Soldering Temperature $260^{\circ}\text{C for } 10 \text{ seconds}$

RECOMMENDED DC OPERATING CONDITIONS

 $(-40^{\circ}\text{C to } +85^{\circ}\text{C})$

					(,
PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Logic 1	V_{IH}	2.0		5.5	V	
Logic 0	$V_{\rm IL}$	-0.3		+0.8	V	
Supply for 3.3V Operation	$V_{ m DD}$	3.135	3.3	3.465	V	1
Supply for 5V Operation	V_{DD}	4.75	5	5.25	V	1

CAPACITANCE $(t_A = 25^{\circ}C)$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Input Capacitance	C_{IN}		5		pF	
Output Capacitance	C_{OUT}		7		pF	

DC CHARACTERISTICS

 $(-40^{\circ}\text{C to } +85^{\circ}\text{C}; V_{DD} = 3.3\text{V} \pm 5\%;$

 -40° C to $+85^{\circ}$ C; $V_{DD} = 5.0 V \pm 5\%$)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Supply Current @ 5V	I_{DD}		75		mA	2
Supply Current @ 3.3V	I_{DD}		85		mA	2
Input Leakage	${ m I}_{ m IL}$	-1.0		+1.0	μΑ	3
Output Leakage	I_{LO}			1.0	μΑ	4
Output Current (2.4V)	I_{OH}	-1.0			mA	
Output Current (0.4V)	I_{OL}	+4.0			mA	· ·

NOTES:

- 1. Applies to VDD.
- 2. TCLK = MCLK = 2.048MHz; driving 50% ones density into 120 ohms & digital outputs open circuited.
- 3. $0.0V < V_{IN} < V_{DD}$.
- 4. Applied to INT* when 3-stated.

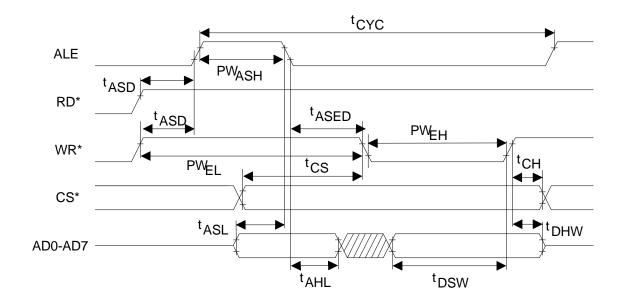
Page 55 092899

^{*} This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

12. AC CHARACTERISTICS

AC CHARACTERISTICS – MULTIPLEXED PARALLEL PORT (BIS1 = 0, BIS0 = 0) [See Figure 12-1, Figure 12-2, Figure

(-40°C to +85°C; V_{DD} = 3.3V ± 5%; -40°C to +85°C; V_{DD} = 5.0V ± 5%)


12-3]

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Cycle Time	t_{CYC}	200			ns	
Pulse Width, DS low or RD*	PW_{EL}	100			ns	
high						
Pulse Width, DS high or	PW_{EH}	100			ns	
RD* low						
Input Rise/Fall times	t_R , t_F			20	ns	
R/W* Hold Time	t_{RWH}	10			ns	
R/W* Set Up time before DS	t_{RWS}	50			ns	
high						
CS* Set Up time before DS,	t_{CS}	20			ns	
WR* or RD* active						
CS* Hold time	t_{CH}	0			ns	
Read Data Hold time	$t_{ m DHR}$	10		50	ns	
Write Data Hold time	$t_{ m DHW}$	0			ns	
Muxed Address valid to AS	t_{ASL}	15			ns	
or ALE fall						
Muxed Address Hold time	$t_{ m AHL}$	10			ns	
Delay time DS, WR* or RD*	t_{ASD}	20			ns	
to AS or ALE rise						
Pulse Width AS or ALE high	PW_{ASH}	30			ns	
Delay time, AS or ALE to	t _{ASED}	10			ns	
DS, WR* or RD*						
Output Data Delay time from	$t_{ m DDR}$	20		80	ns	
DS or RD*						
Data Set Up time	$t_{ m DSW}$	50			ns	

tCYC ALE PWASH t_{ASD} WR* ^tASED ▶ tASD PWEH RD* PWEL tcs CS* ^tASL **≛**|tDHR $^{\rm t}$ DDR AD0-AD7 $^{\mathsf{t}}\mathsf{AHL}$

Figure 12-1 **INTEL BUS READ TIMING (PBTS = 0, BIS1 = 0, BIS0 = 0)**

Figure 12-2 INTEL BUS WRITE TIMING (PBTS = 0, BIS1 = 0, BIS0 = 0)

PWASH AS ► PW_{EH} t_{ASD} ^t ASED DS tCYC **●** ^tRWH ^tRWS ◀▶ R/W* ^tDDR ^tASL → **◆** t_{DHR} AD0-AD7 (read) t_{AHL} ^tCH **▶**tcs CS* ^tDSW t_{ASL}→ AD0-AD7 (write) ^tDHW ^tAHL

Figure 12-3 MOTOROLA BUS TIMING (PBTS = 1, BIS1 = 0, BIS0 = 0)

AC CHARACTERISTICS – NON-MULTIPLEXED PARALLEL PORT (BIS1 = 0, BIS0 = 1)

[See Figure 12-4, Figure 12-5, Figure 12-6, Figure 12-7]

 $\begin{array}{l} \text{(-40°C to +85°C; V}_{DD} = 3.3 \text{V} \pm 5\%; \\ \text{-40°C to +85°C; V}_{DD} = 5.0 \text{V} \pm 5\%) \end{array}$

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Set Up Time for A0 to A4,	t1	0			ns	
Valid to CS* Active						
Set Up Time for CS* Active	t2	0			ns	
to either RD*, WR*, or DS*						
Active						
Delay Time from either RD*	t3			75	ns	
or DS* Active to Data Valid						
Hold Time from either RD*,	t4	0			ns	
WR*, or DS* Inactive to						
CS* Inactive						
Hold Time from CS*	t5	5		20	ns	
Inactive to Data Bus 3–state						
Wait Time from either WR*	t6	75			ns	
or DS* Active to Latch Data						
Data Set Up Time to either	t7	10			ns	
WR* or DS* Inactive						
Data Hold Time from either	t8	10			ns	
WR* or DS* Inactive						
Address Hold from either	t9	10			ns	
WR* or DS* inactive						

Figure 12-4 INTEL BUS READ TIMING (PBTS = 0, BIS1 = 0, BIS0 = 1)

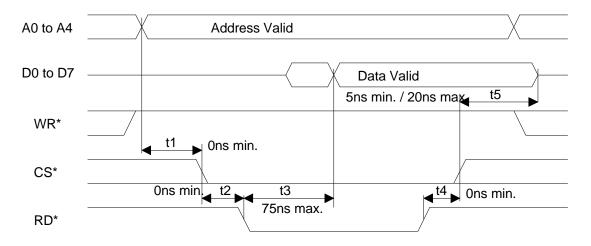


Figure 12-5 **INTEL BUS WRITE TIMING (PBTS = 0, BIS1 = 0, BIS0 = 1)**

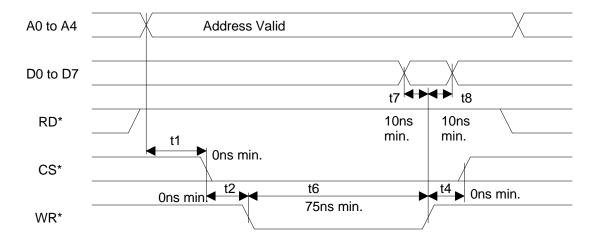
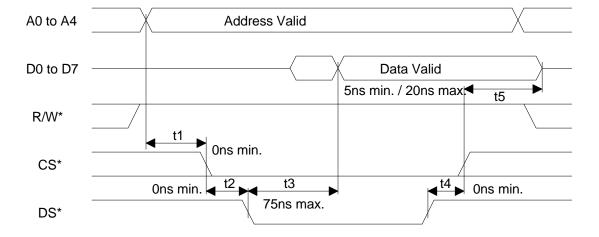



Figure 12-6 MOTOROLA BUS READ TIMING (PBTS = 1, BIS1 = 0, BIS0 = 1)

DS*

Ons min.

A0 to A4

Address Valid

D0 to D7

R/W*

CS*

Address Valid

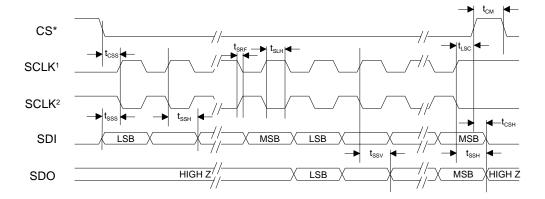
10ns
min. t7 t8 min.

t6

75ns min.

Figure 12-7 MOTOROLA BUS WRITE TIMING (PBTS = 1, BIS1 = 0, BIS0 = 1)

Page 61 092899


AC CHARACTERISTICS – SERIAL PORT

(BIS1 = 1, BIS0 = 0) [See Figure 12-8] $(-40^{\circ}\text{C to } +85^{\circ}\text{C}; V_{DD} = 3.3\text{V} \pm 5\%;$

 -40° C to $+85^{\circ}$ C; $V_{DD} = 5.0 V \pm 5\%$)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
Set Up Time CS* to SCLK	t_{CSS}	50			ns	
Set Up Time SDI to SCLK	t_{SSS}	50			ns	
Hold Time SCLK to SDI	t_{SSH}	50			ns	
SCLK High/Low Time	$t_{\rm SLH}$	200			ns	
SCLK Rise/Fall Time	$t_{ m SRF}$			50	ns	
SCLK to CS* Inactive	t_{LSC}	50			ns	
CS* Inactive Time	t_{CM}	250			ns	
SCLK to SDO Valid	t_{SSV}			50	ns	
SCLK to SDO Tri-State	t_{SSH}		100		ns	
CS* Inactive to SDO Tri-	t_{CSH}		100		ns	
State						

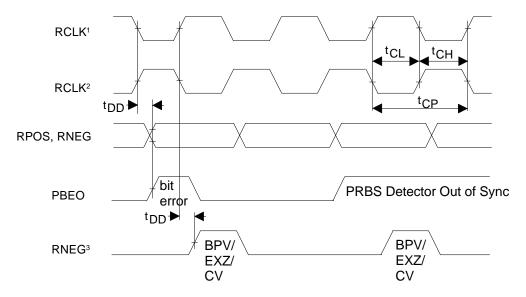
Figure 12-8 **SERIAL BUS TIMING** (**BIS1 = 1, BIS0 = 0**)

- 1. OCES = 1 & ICES = 0.
- 2. OCES = 0 & ICES = 1.

AC CHARACTERISTICS -

RECEIVE SIDE

[See Figure 12-9]


$(-40^{\circ}\text{C to } +85^{\circ}\text{C}; V_{DD} = 3.$	$3V \pm 5\%;$
-40° C to $+85^{\circ}$ C; $V_{DD} = 5.0$	$0V \pm 5\%$)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
RCLK Period	t_{CP}		488		ns	1
			648		ns	2
RCLK Pulse Width	t_{CH}	200			ns	3
	$t_{ m CL}$	200			ns	3
RCLK Pulse Width	t_{CH}	150			ns	4
	$t_{ m CL}$	150			ns	4
Delay RCLK to RPOS, RNEG,	$t_{ m DD}$			50	ns	
PBEO, RBPV Valid						

NOTES:

- 1. E1 Mode.
- 2. T1 or J1 Mode.
- 3. Jitter attenuator enabled in the receive path.
- 4. Jitter attenuator disabled or enabled in the transmit path.

Figure 12-9 **RECEIVE SIDE TIMING**

Notes:

- 1. RCES = 1 (CCR2.0) or CES = 1.
- 2. RCES = 0 (CCR2.0) or CES = 0.
- 3. RNEG is in NRZ mode (CCR1.6 = 1).

Page 63 092899

AC CHARACTERISTICS –

TRANSMIT SIDE [See Figure 12-10] $(-40^{\circ}\text{C to } +85^{\circ}\text{C}; V_{DD} = 3.3\text{V} \pm 5\%;$

-40° C to $+85^{\circ}$ C; $V_{DD} = 5.0 V \pm 5\%$)

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	NOTES
TCLK Period	t_{CP}		488		ns	1
			648		ns	2
TCLK Pulse Width	t_{CH}	75			ns	
	t_{CL}	75			ns	
TPOS/TNEG Set Up to TCLK	$t_{ m SU}$	20			ns	
Falling or Rising						
TPOS/TNEG Hold from TCLK	$t_{ m HD}$	20			ns	
Falling or Rising						
TCLK Rise and Fall Times	t_R , t_F			25	ns	

NOTES:

- 1. E1 Mode.
- 2. T1 or J1 Mode.

Figure 12-10 **TRANSMIT SIDE TIMING**

- TCES = 0 (CCR2.1) or CES = 0.
 TCES = 1 (CCR2.1) or CES = 1.

13. MECHANICAL DIMENSIONS

0.80 BSC

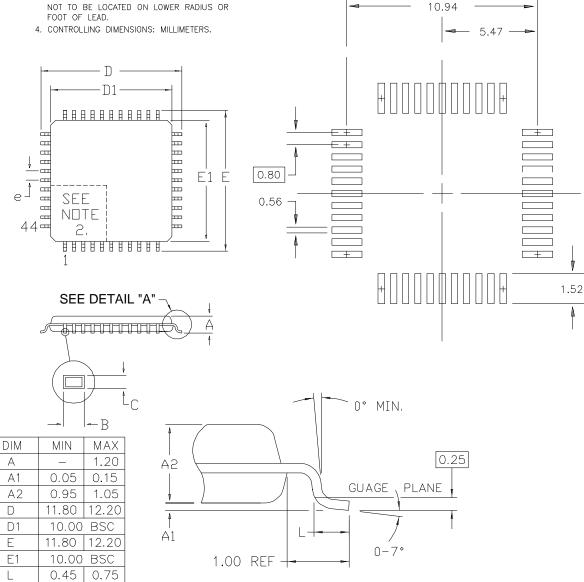
0.45

0.20

0.30

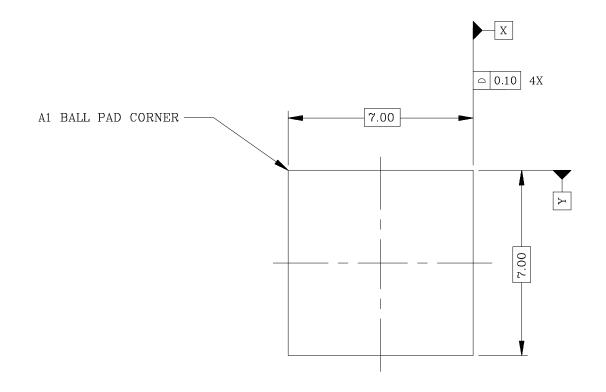
0.09

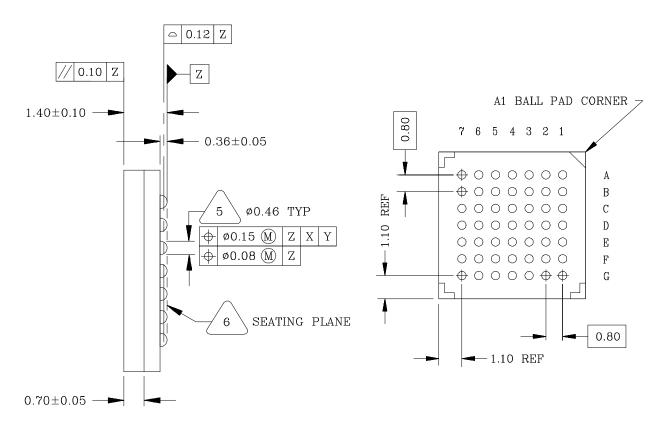
е В


С

NOTES:

- 1. DIMENSIONS D1 AND E1 INCLUDE MOLD MISMATCH, BUT DO NOT INCLUDE MOLD PROTRUSION; ALLOWABLE PROTRUSION IS 0.25 MM PER SIDE.
- 2. DETAILS OF PIN 1 IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED WITHIN THE ZONE INDICATED.
- 3. ALLOWABLE DAMBAR PROTRUSION IS 0.08 MM TOTAL IN EXCESS OF THE B DIMENSION; AT MAXIMUM MATERIAL CONDITION. PROTRUSION NOT TO BE LOCATED ON LOWER RADIUS OR FOOT OF LEAD.




44 PIN TQFP, 10*10*1.0

DIMENSIONS ARE IN MILLIMETERS

DETAIL A

Page 66 092899