
Engineer To Engineer Note EE-18
Notes on using Analog Devices’ DSP, audio, & video components from the Computer Products Division
Phone: (800) ANALOG-D or (617) 461-3881, FAX: (617) 461-3010, EMAIL: dsp_applications@analog.com

a

Boot Paging I: FAQ : Boot Pages
on the 21xx Family DSP’s
(excluding 218x and CSP01).

Last Modified: 7/21/1997

Introduction

This Engineer’s Note addresses commonly asked
questions about the boot page capabilities of the
ADSP-21xx family Digital Signal Processors
(DSP). The questions cover the basic concepts of
boot pages, hardware and software
implementation of boot pages, and programming
techniques for effective use of boot pages while
programming in both 21xx assembly language
and C.

What are Boot Pages?

Boot Pages provide a means of executing
programs larger that require more memory than
the internal Program Memory (PM) of the DSP. A
large program can be segmented into a maximum
of 8 parts or “pages”, and stored in an external
memory device (i.e. EPROM, RAM, etc.)
connected to the DSP. Individual pages can then
be automatically loaded into PM at any time
through simple software functions.

For example, a control system that uses an
ADSP-2103 varies the speed of a motor based on
the data received from an external probe. The
program driving the DSP performs test functions
on the system and does a wide variety of signal
analysis on the incoming data. The code for this
program is much larger than the internal PM of
the 2103, so it is divided into 6 pages or segments
of code. The first page (page zero) is automatically
loaded at RESET and contains boot and test code,
as well as instructions to load the second page
into PM. The second page then retrieves data
from probe and loads either the third or the fifth
page into PM, depending on the instructions and
data the 2103 received.

How are boot pages loaded from an external
memory device into Program Memory?

There are two ways that boot pages are loaded
into PM: asserting the MMAP pin (logical zero)
on the DSP while resetting the DSP, and setting
the BFORCE field of the SYSCON (DSP System
Control Register) to a logical one. The first
method always loads boot page zero into PM upon
chip reset. The second method occurs at any time
and is initiated entirely through software. On the
processor cycle following the assertion of the
BFORCE bit of SYSCON, the boot page
designated by the 3-bit BPAGE field of SYSCON
is automatically loaded into PM and begins
executing as soon as it is finished loading.

What types of external memory devices can
be used and how do they connect to the
ADSP-2100 family?

The most commonly used memory device for this
application is the EPROM (2764, 27128, 27256,
27512). However, any type of memory device can
be used as long as it is fast enough and
compatible with the address bus, data bus and
memory control signals of the ADSP-2100 family.
This includes flash memory, dual-ported RAM, or
another processor.

The ADSP-2100 family DSPs can access up to 64
Kbytes of external boot page memory. This block
of memory is segmented in eight pages. Each
page is a maximum of 8 Kbytes long and a
minimum of 32 bytes long. The memory must also
be at least 8-bits wide (memory wider than 8 bits
can be used but the extra bits are discarded).

64 Kbytes of memory require 16 address bits to
decode. The ADSP-2100 external address bus is
only 14 bits wide so 2 bits are taken from bits 22
and 23 of the external data bus. The external
data bus connects to the most significant address
bits of the external memory device.

The figure below shows how an external memory
device is connected to the DSP.

EE-18 Page 2

Notes on using Analog Devices’ DSP, audio, & video components from the Computer Products Division
Phone: (800) ANALOG-D or (781) 461-3881, FAX: (781) 461-3010, EMAIL: dsp_applications@analog.com

ADSP 2101
 2104
 2105
 2115
 2171

BMS

RD

Data

Addr A0:A13
Addr (0:15)

Data (0:7)
D22:D23

D15:D8

RD CE

MMAP

External
Memory
Device

The number of wait states that the external
memory device requires is defined in the 3-bit
BWAIT field of SYSCON. This value defaults to 3
(7 for the ADSP 217x and msp5x).

How is the 24-bit program data stored in the
8-bit external memory?

Each 24-bit instruction takes up 4 locations of the
external 8-bit memory leaving one 8-bit byte
unused. In the first word of each page this fourth
byte contains the page length. The page length is
calculated with the following formula:

Page Length = (number of 24bit PM words / 8) - 1

Below is a boot page memory map demonstrating
this allocation where:

USB = Upper Significant Bits (23-16)
MSB = Middle Significant Bits (15-8)
LSB = Low Significant Bits (7-0)

Address Contents
0000 Word 0 : USB
0001 Word 0 : MSB
0002 Word 0 : LSB
0003 Page Length
0004 Word 1 : USB
0005 Word 1 : MSB
0006 Word 1 : LSB
0007 unused
0008 Word 2 : USB
0009 Word 2 : MSB

The 16 bits of the boot page memory address are
defined as:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Page # Eight-bit Page Length 1 1 1

USB = 00

 2-bit byte code: MSB = 01

LSB = 10

The “word pointer” is an internal variable that
points to the base address of the word that the
DSP is loading

What happens when the processor loads a
boot page from external memory?

On the processor cycle following the assertion of
the BFORCE bit of SYSCON, or when the
processor is reset with the MMAP pin asserted
(logical zero), the processor begins loading the
boot page byte-by-byte from the external memory
device as follows:

1. The processor first reads from boot-memory
location 0x0003 which holds the page length.
The page length = (number of 24-bit PM
words in current page/8)-1.

2. The processor uses the page length to
compute the address of the last PM word in
the current boot-page. It then initializes the
internal word-counter with the starting boot-
memory address of this 4-byte word.

3. The processor loads upper byte of the word
pointed to by the word-counter.

4. The processor loads the lower byte of the
word pointed to by the word-counter.

5. The processor loads the middle byte of the
word pointed to by the word-counter.

6. The processor decrements the internal word
counter to the next block of 4 bytes.

7. The processor repeats steps 3 through 6 until
all words are loaded.

Word Pointer

EE-18 Page 3

Notes on using Analog Devices’ DSP, audio, & video components from the Computer Products Division
Phone: (800) ANALOG-D or (781) 461-3881, FAX: (781) 461-3010, EMAIL: dsp_applications@analog.com

How is boot paging implemented in 21xx
assembly language?

Boot page implementation in assembly is quite
simple. The first step is to break the code into
logical pages. Ideally, a paged program is
optimized in such a way that it reloads PM as few
times as possible. This is because it takes several
instruction cycles to load a new program from the
external memory device into the processor’s PM.

Once the program has been segmented, each page
is treated as a standalone program. Because of
this, each page requires the following assembly
code:

• A .module/ram/boot=n/abs=0

This as the first statement where n is the
designated boot page number for the specific page
(0-7).

• All #include statements required for the
code in the given boot page.

• All system constant definitions

This is done by including a .h file that contains
these declarations in each page (see the listing of
misc.h below and mem-x.h on the following page).

• An interrupt vector table with the reset
vector pointing to the first line of your code.

• An .endmod statement at the end of the code.

The next step is to add statements within the
pages that load other pages. Loading a new page
into program memory requires specifying the
page number in the BPAGE field of SYSCON and
setting the BFORCE bit of SYSCON. The page
load begins immediately. To facilitate this
process, you can define constants that are loaded
into the SYSCON which load any given page.
This is done by creating a .h file to be #included
in each page. The following is an example of this:

{misc.h : Boot page constants}

.const Now_Boot_Page_0 = B#0000001000011001;

.const Now_Boot_Page_1 = B#0000001001011001;

.const Now_Boot_Page_2 = B#0000001010011001;

.const Now_Boot_Page_3 = B#0000001011011001;

.const Now_Boot_Page_4 = B#0000001100011001;

 bit 9 (BFORCE)

 bits 6-8 (BPAGE)

Notice the BFORCE bit (bit 9) is set to logical one
for each page and that bits 6 through 8 define the
page to jump to)

If every page includes this file (#include
<misc.h>), a boot page load assembly program
can be as follows:

AX0 = dm(Now_Boot_Page_4);

DM(SYS_CTRL_REG) = AX0;

You can take this a step further by creating a
routine within the page to load another page:

jump_to_page_3:

AX0 = dm(Now_Boot_Page_3);

DM(SYS_CTRL_REG) = AX0;

For example, if page 3 is loaded into program
memory and you want to load page 4, the Z bit of
the ALU should be set after a numerical
operation using the following statement:

if EQ jump jump_to_page_3;

If the z bit is set, the processor jumps to the above
routine and loads page 3 into PM. After page 3
loads, the processor begins execution where the
reset vector in the interrupt table of page 3
points.

If the pages of code share variables and/or arrays
(i.e. an array of filter coefficients in data
memory), they must be defined as static in page 0
and referenced as external variables in every
other page where they are used. For example,
suppose every page requires access to a 32
element array located in data memory as well as
three variables that are also located in data
memory. You need to create two .h files: one that
defines the array and variables and is included in
page 0 and the second that defines the array and
variables as externals and is included in pages 1
through 7. The first one looks like this:

{Mem-g.h - global memory/constant
definitions}

.var/dm/static array[32];

.var/dm/static variable_1;

.var/dm/static variable_2;

.var/dm/static variable_3;

.GLOBAL array;

.GLOBAL variable_1;

.GLOBAL variable_2;

EE-18 Page 4

Notes on using Analog Devices’ DSP, audio, & video components from the Computer Products Division
Phone: (800) ANALOG-D or (781) 461-3881, FAX: (781) 461-3010, EMAIL: dsp_applications@analog.com

.GLOBAL variable_3;

Note: variables may also be stored in PM. It is
important that variables are allocated in such a
way that they are not overwritten during page
loads as in the following code example:

var/pm/abs=0x3000/static array[32];

As the longest page is less than 0x3000 words,
this array is safe.

Page 0 includes the following statement:

#include <Mem-g.h>

The .h file (included in pages 1 through 7)
follows:

{Mem-x.h - external definitions}

.EXTERNAL array;

.EXTERNAL variable_1;

.EXTERNAL variable_2;

.EXTERNAL variable_3;

Pages 1 through 7 include the statement:

#include <Mem-x.h>

It is useful in some applications to define global
variables that hold the previous page information
(corresponding SYSCON values) so that pages are
implemented as subroutines. For example, you
can call page 5 from any page; when page 5 is
finished executing, it knows which page to reload
based on the value of the global variable holding
the previous page information. Again, you can
define the variable in the Mem-g.h file as:

.var/dm/static previous_page;

 and in the Mem-x.h file as:

 .EXTERNAL previous_page;

Conclusion

Boot-paging provides a simple and efficient way
to execute blocks of code larger than the internal
program memory of the DSP. When implemented,
boot pages are virtually transparent to the
programmer and to the DSP system.

