
Engineer To Engineer Note EE-2
Notes on using Analog Devices’ DSP, audio, & video components from the Computer Products Division
Phone: (800) ANALOG-D or (781) 461-3881, FAX: (781) 461-3010, EMAIL: dsp_applications@analog.com

a

Using ADSP-218x I/O Space

Last modified 11/08/96

Introduction

Digital Signal Processors (DSPs) are often chosen
by designers performing arithmetic operations on
binary data. DSPs perform many common signal
processing algorithms, such as filtering or fast
fourier transforms on input digitized data, more
economically than corresponding analog circuits.
The information that the DSP processes usually
comes from an analog-to-digital converter, which
represents the real-world value as a binary
number. After processing by the DSP, the output
goes through a digital-to-analog converter, which
provides a continuous signal that is useful for
real-world feedback. This data flow appears in
Figure 1. Because real-world signal I/O can be an
important part of DSP system operations, I/O
between the DSP and converters is a major
design issue when developing a DSP system.

A/D
Converter

DSP
ADSP-2181

 D/A
Converter

External
Signal

Ext
 Signal

Figure 1 - DSP Data Flow

There are two methods for sending digitized
information to a DSP. One method is serial
communication. All Analog Devices ADSP-2100
family DSPs have synchronous serial
communication ports (SPORTs). These SPORTs
let you connect many types of serial-converters
directly to the DSP.

The other communications method is to connect
the converter as a parallel I/O source. On most
ADSP-2100 family DSPs, parallel I/O is available
by connecting the converter as a memory-mapped
peripheral in the DSP’s Program Memory or Data
Memory Spaces. But, memory mapped I/O on
these DSPs does require some interface hardware
to manage the input from the converter.

ADSP-218x DSPs, however, differs from other
processors of the ADSP-21xx family with regard
to memory mapped I/O. Unlike other members of
this DSP family (which required memory-mapped
peripherals be connected to PM or DM spaces),
ADSP-218x DSPs have their own separate I/O
space. For managing I/O space access, ADSP-218x
DSPs have an extra memory select line /IOMS.
The ADSP-218x DSPs’ I/O Space allows access to
up to 2048 locations of 16-bit data. This space
should be used to communicate with parallel
devices such as data converters, external
registers, or latches. This additional select line
lets this DSP perform parallel-peripheral I/O
without the additional decoding hardware that is
required by other ADSP-21xx family DSPs.

Before describing how to use and ADSP-218x
DSP’s I/O space, it would be useful to review
some I/O space features. ADSP-218x DSP I/O
space has the following features:

• Provides directly-addressed locations

• Supports 16-bit transfers

• Has four waitstate ranges with 512 locations
each

• Includes a dedicated I/O select line, /IOMS

• And, the ADSP-218x DSP’s assembly
language has syntax that supports this I/O
space:
Dreg = IO(address);

! Reads from an IO address

IO(address) = Dreg;

! Writes to an IO address

This engineer’s note explains how to set up and
use parallel I/O with an ADSP-218x DSP’s I/O
space and port your existing ADSP-21xx code to
take advantage of this I/O space. Using this space
in your design lets you eliminate the external
address decoding for parallel peripherals, which
is required for other ADSP-21xx family DSPs,
because you can use the ADSP-218x DSP’s
dedicated I/O select line, /IOMS, during I/O space
accesses.

EE-2 Page 2

Notes on using Analog Devices’ DSP, audio, & video components from the Computer Products Division
Phone: (800) ANALOG-D or (781) 461-3881, FAX: (781) 461-3010, EMAIL: dsp_applications@analog.com

Porting ADSP-21xx Code To Take
Advantage Of ADSP-218x I/O Space

If you are porting your ADSP- 21xx family DSP
design to an ADSP-218x DSP, you must make
some changes to your source code and
architecture file for the I/O space device to
communicate with the DSP correctly. If your
current design uses an ADSP-2101, your system
file includes a declaration for a data memory-
mapped I/O port. For example (using Release 5.x
development software tools), the system file in
listing 1 shows how to define a port at address
0x0100.
.SYSTEM some_example;

.ADSP2101;

.MMAP0;

.SEG/PM/RAM/ABS=0x0000/CODE/DATA int_pm[2048];

.SEG/PM/RAM/ABS=0x800/CODE/DATA ext_pm[14336];

.SEG/DM/RAM/ABS=0x0000/DATA ext_dm1[256];

.PORT/DM/ABS=0x0100 some_port;

.SEG/DM/RAM/ABS=0x0101/DATA ext_dm2[14079];

.SEG/DM/RAM/ABS=0x3800/DATA int_dm[1024];

.ENDSYS;

Listing 1 - ADSP-2101 System File

From this file, you create your architecture file
created using the command (in DOS):

bld21 my_2101.sys

The output of this command results in Listing 2.
$SOME_EXAMPLE

$ADSP2101

$MMAP0

$0000 07FF paxINT_PM t

$0800 3FFF paxEXT_PM t

$0000 00FF dadEXT_DM1 t

$0100 0100 dapSOME_PORT t

$0101 37FF dadEXT_DM2 t

$3800 3BFF dadINT_DM t

$

Listing 2 - ADSP-2101 Architecture File

In the main module of your ADSP-2101 source
program, your code accesses a port using the
assembly language directives and instructions in
Listing 3.
.MODULE/SEG=int_pm/RAM/ABS = 0 test;

.PORT some_port;

JUMP start; RTI;NOP;NOP;

RTI;NOP;NOP;NOP;

RTI;NOP;NOP;NOP;

RTI;NOP;NOP;NOP;

RTI;NOP;NOP;NOP;

RTI;NOP;NOP;NOP;

RTI;NOP;NOP;NOP;

start: ar = 0x0100;

dm(some_port) = ar;

nop;

.ENDMOD;

Listing 3 - ADSP-2101 Memory Mapped I/O Code

To port Listings 2 and 3 so that they can work on
an ADSP-218x, you must modify your source files.
Use the following steps:

1. Remove all instances of the .PORT directive
from your system builder file

2. Use the IO command in your source programs
to write to or read from this port address

So, your new system file, new_218x.sys, looks
like Listing 4.
.SYSTEM some_example;

.ADSP218x;

.MMAP0;

.SEG/PM/RAM/ABS=0x0000/CODE/DATA int_pm[16384];

.SEG/DM/RAM/ABS=0x0000/DATA int_dm[16384];

.ENDSYS;

Listing 4 - ADSP-218x System File

EE-2 Page 3

Notes on using Analog Devices’ DSP, audio, & video components from the Computer Products Division
Phone: (800) ANALOG-D or (781) 461-3881, FAX: (781) 461-3010, EMAIL: dsp_applications@analog.com

And, your architecture file looks like Listing 5.
$SOME_EXAMPLE

$ADSP218x

$MMAP0

$0000 3FFF paxINT_PM t

$0000 3FFF dadINT_DM t

$

Listing 5 - ADSP-218x Architecture File

Corresponding code for I/O space accesses in an
ADSP-218x program appears in Listing 6.
.MODULE/SEG=int_pm/RAM/ABS = 0 test;

.CONST some_port =0x0100;

JUMP start; RTI;NOP;NOP;

RTI;NOP;NOP;NOP;

RTI;NOP;NOP;NOP;

RTI;NOP;NOP;NOP;

RTI;NOP;NOP;NOP;

RTI;NOP;NOP;NOP;

RTI;NOP;NOP;NOP;

RTI;NOP;NOP;NOP;

RTI;NOP;NOP;NOP;

RTI;NOP;NOP;NOP;

RTI;NOP;NOP;NOP;

RTI;NOP;NOP;NOP;

start: i0 = 0x0100;

m0 = 0;

l0 = 0;

dm(i0,m0) = 0x0100;

ar = dm(i0,m0);

io(some_port) = ar;

nop;

.ENDMOD;

Listing 6 - ADSP-218x Assembly Code For I/O Space Access

Accessing I/O space in C

Using the G21 compiler in the Release 5.x
development tools, you must use in-line assembly
language to access an I/O port from within a C
program. Listing 7 shows example C code for this
operation.

asm(“#define some_port 0x0100”);

asm(“IO(some_port) = ar;”);

Listing 7 - ADSP-218x C Code For I/O Space Access

The example code in Listing 7 writes to an I/O
port at address 0x0100 from the ar data register.
You can similarly read from an I/O port into any
data register.

It is important to note that you have to use a data
register (dreg) to either read from or write to the
I/O port. For a list of data registers, refer the
ADSP-2100 Family User’s Manual.

Piping a C variable to an I/O Port

If you want to send the value of a C variable to an
I/O port, use in-line assembly as shown in
Listing 8.
int myvar;

/* variable declared globally */

void main(void)

{

 myvar=256 ;

 asm(".external myvar_;");

 asm("ax0=dm(myvar_);");

 asm("IO(0x0100)=ax0;");

}

Listing 8 - ADSP-218x C Code For Variable I/O Space Access

The code in Listing 8 pipes the value of a C
variable myvar to I/O port at address 0x0100.
Note that the variable is declared globally to
make it accessible to the assembly code. It is also
necessary to declare the variable as an external
before trying to access it. Finally, note the choice
of the ax0 register to store the value. This
register is regarded as a scratch register by the C
compiler and is hence safe to use.

You can similarly use in-line assembly to direct a
value from an I/O port into a C variable.

EE-2 Page 4

Notes on using Analog Devices’ DSP, audio, & video components from the Computer Products Division
Phone: (800) ANALOG-D or (781) 461-3881, FAX: (781) 461-3010, EMAIL: dsp_applications@analog.com

I/O simulation

One of the main features of the I/O ports in the
ADSP-218x simulator is transferring input data
to a simulated I/O port from a data file and
redirecting output data to a data file. To simulate
port I/O with file I/O, choose the following within
the simulator:

Memory

Port Display

Open

Use these menu options, as shown in Figure 2, to
open the simulator’s Port Open menu. You must
select the IO option inside the Port Open Menu,
selecting PM or DM causes an error.

Once you have set up the data files names and
clicked Yes in the Accept Port Configuration
field, you can execute or step through the dummy
instructions in the Program Memory Window,
also shown in Figure 2. It is important to note
that the value that is displayed at the IO memory
address location 0x0100 in the I/O memory
window maybe inaccurate. It is possible, however,
to verify the correctness of the data that is
actually written to the I/O port by exiting/quitting
the simulator and looking at the out.dat data file
(shown in Listing 9).

C:\PROJECTS>type out.dat

0100

C:\PROJECTS>

Listing 9 - Viewing The OUT.DAT File (In DOS)

Figure 2 - ADSP-218x Simulator Program Memory Window, IO Memory Window, & Port Open Menu

