FEATURES

- High Data Rate: DC - 100 MBd
- Compatible with 3.3 V or 5 V Operation
- Low Power Operation

5V Operation: $\quad 0.7 \mathrm{~mA} @ 1 \mathrm{MBd}$, $6.3 \mathrm{~mA} @ 25 \mathrm{MBd}$, 24 mA @ 100 MBd
3.3V Operation: $0.5 \mathrm{~mA} @ 1 \mathrm{MBd}$,
4.1 mA @ 25 MBd ,
$16 \mathrm{~mA} @ 100 \mathrm{MBd}$

- Small Footprint: Standard 8 Lead SO package
- High Common Mode Transient Immunity: $>25 \mathrm{kV} / \mu \mathrm{S}$
- No Long Term Wearout
- Safety and Regulatory Approvals (Pending) UL Recognized
2500 Vrms for 1 min. per UL 1577
CSA Component Acceptance Notice \#5
VDE 0884
$\mathrm{V}_{\text {IORM }}=560 \mathrm{Vpeak}$

APPLICATIONS

- Digital Fieldbus Isolation
- Opto-Isolator Replacement
- Computer-Peripheral Interface
- Microprocessor System Interface
- General Instrumentation and Data Acquisition Applications

DESCRIPTION
The ADuM1100A and ADuM1100B are digital isolators based on Analog Devices' $\boldsymbol{\mu} \boldsymbol{\pi}$ Isolation (micromachined isolation) technology. Combining high-speed CMOS and monolithic air core transformer technology, these isolation components provide outstanding performance characteristics superior to optocoupler devices.

Configured as pin-compatible replacements for existing high-speed optocouplers, the ADuM1100A and ADuM1100B support data rates as high as 25 MBd and 100 MBd , respectively.

Both the ADuM1100A and ADuM1100B operate at either 3.3 V or 5 V supply voltages, boast propagation delay of $<10 \mathrm{~ns}$ and edge asymmetry of $<2 \mathrm{~ns}$. They operate at very low power, less than 0.65 mA of quiescent current (sum of both sides) and an additional current of $460 \mu \mathrm{~A}$ per MHz of signal frequency ($230 \mu \mathrm{~A}$ per Mbd). Unlike common transformer implementations, the ADuM1100A/B provides DC correctness with a patented refresh feature which continuously updates the output signal.

FUNCTIONAL BLOCK DIAGRAM

* Pin 3 and Pin 7 on the ADuM1100A are not connected internally.

TRUTH TABLE (POSITIVE LOGIC)

V_{I}, Input	$\mathrm{V}_{\mathrm{DD1}}$ State	$\mathrm{V}_{\mathrm{DD} 2}$ State	V_{O}, Output	Note
H	Powered	Powered	H	
L	Powered	Powered	L	
X	Unpowered	Powered	H	V_{O} returns to V_{I} state within $2 \mu \mathrm{sec}$ of power restoration
X	Powered	Unpowered	X	V_{O} returns to V_{I} state within $2 \mu \mathrm{sec}$ of power restoration

Protected by U.S. patent 5,952,849. Additional patents are pending.

Regulatory Information

(pending)

Insulation and Safety Related Specifications

Parameter	Symbol	Value	Units	Conditions
Minimum External Air Gap (Clearance)	L(I01)	4.90	mm	Measured from input terminals to output terminals, shortest distance through air.
Minimum External Tracking (Creepage)	L(I02)	4.35	mm	Measured from input terminals to output terminals, shortest distance path along body.
Minimum Internal Plastic Gap (Internal Clearance)		0.016	mm	Insulation distance through insulation.
Tracking Resistance (Comparative Tracking Index)	CTI	>175	Volts	DIN IEC 112/VDE 0303 Part 1
Isolation Group		IIIa		Material Group (DIN VDE 0110, 1/89, Table 1)

VDE 0884 Insulation Characteristics

Description	Symbol	Characteristic	Units
Installation classification per DIN VDE 0110 for rated mains voltage $<=150 \mathrm{Vrms}$ for rated mains voltage $<=300 \mathrm{Vrms}$		$\begin{gathered} \text { I- IV } \\ \text { I- III } \\ \hline \end{gathered}$	
Climatic Classification		55/85/21	
Pollution Degree (DIN VDE 0110, Table 1)		2	
Maximum Working Insulation Voltage	$\mathrm{V}_{\text {IORM }}$	560	Vpeak
Input to Output Test Voltage, Method b $\mathrm{V}_{\text {IORM }} \times 1.875=\mathrm{V}_{\mathrm{PR}}, 100 \%$ Production Test, $\mathrm{t}_{\mathrm{m}}=1$ sec, Partial Discharge $<5 \mathrm{pC}$	$V_{P R}$	1050	Vpeak
Input to Output Test Voltage, Method a $V_{\text {IORM }} \times 1.5=\mathrm{V}_{\mathrm{PR}}$, Type and Sample Test, $\mathrm{t}_{\mathrm{m}}=60 \mathrm{sec}$, Partial Discharge $<5 \mathrm{pC}$	V_{PR}	840	Vpeak
Highest Allowable Over-voltage (Transient Over-voltage, $\mathrm{t}_{\mathrm{TR}}=10 \mathrm{sec}$)	$V_{T R}$	4000	Vpeak
Safety-limiting values (Maximum value allowed in the event of a failure) Case Temperature Input Current Output Power	T_{S} $\mathrm{I}_{\mathrm{S}, \text { INPUT }}$ $\mathrm{P}_{\mathrm{S}, \text { OUTPUT }}$	$\begin{aligned} & \text { TBD } \\ & \text { TBD } \\ & \text { TBD } \\ & \hline \end{aligned}$	$\begin{aligned} & { }^{\circ} \mathrm{C} \\ & \mathrm{~mA} \\ & \mathrm{~mW} \end{aligned}$
Insulation Resistance at Ts, $\mathrm{V}_{\mathrm{IO}}=500 \mathrm{~V}$	Rs	$>10^{9}$	Ω

Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units
Storage Temperature	T_{S}	-55	125	${ }^{\circ} \mathrm{C}$
Ambient Operating Temperature	T_{A}	-40	85	${ }^{\circ} \mathrm{C}$
Supply Voltages	$\mathrm{V}_{\mathrm{DD} 1.2}$	0	6.5	V
Input Voltage	$\mathrm{V}_{\text {I }}$	-0.5	$\mathrm{V}_{\text {DDI }+0.5}$	V
Output Voltage	V_{0}	-0.5	$\mathrm{V}_{\mathrm{DD} 2+0.5}$	V
Average Output Current	I_{0}		25	mA
ESD (Human Body Model)			2.0	KV
Lead Solder Temperature	TBD			
Solder Reflow Temperature Profile	TBD			

Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units	Note
Operating Temperature	T_{A}	-40	85	${ }^{\circ} \mathrm{C}$	
Supply Voltages	$\mathrm{V}_{\mathrm{DD} 1.2}$	3.0	5.5	V	1
Logic High Input Voltages	V_{IH}	$0.8+0.24 \mathrm{~V}_{\mathrm{DDI} 1}$	$\mathrm{~V}_{\mathrm{DD} 1}$	V	
Logic Low Input Voltage	V_{IL}	0.0	0.8	V	
Input Signal Rise and Fall Times			1.0	ms	2
Ambient Magnetic Field			10	KGauss	3

Electrical Specifications, 5V Operation
$4.5 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2} \leq 5.5 \mathrm{~V}$. Test conditions that are not specified can be anywhere within the recommended operating range. All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=+5 \mathrm{~V}$.

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Fig.	Note
DC Specifications								
Input Supply Current	$\mathrm{I}_{\mathrm{DD1} 1(\mathrm{Q})}$		0.15	0.40	mA	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{DD} 1}$		
Output Supply Current	$\mathrm{I}_{\mathrm{DD2} \text { (Q) }}$		0.15	0.25	mA	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{DD} 1}$		
Input Supply Current (25 MBd)	$\mathrm{I}_{\mathrm{DD1} 125)}$		3.9	4.6	mA	12.5 MHz logic signal freq.	1	
Output Supply Current (25 MBd)	$\mathrm{I}_{\mathrm{DD2} 25 \text {) }}$		1.4	1.7	mA	12.5 MHz logic signal freq.	2	
Input Supply Current (100 MBd)	$\mathrm{I}_{\mathrm{DDI}(100)}$		15	18	mA	50 MHz logic signal freq., ADuM1100B only	1	
Output Supply Current (100 MBd)	$\mathrm{I}_{\text {DD2(100) }}$		5.2	6	mA	50 MHz logic signal freq., ADuM1100B only	2	
Input Current	I_{I}	-10	0.01	10	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {DD } 1}$		
Logic High Output Voltage	V_{OH}	4.4	5.0	?	V	$\mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$		
		4.0	4.6			$\mathrm{I}_{\mathrm{O}}=-4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$		
Logic Low Output Voltage	V_{OL}		0.0	0.1	V	$\mathrm{I}_{\mathrm{O}}=20 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$		
	-		0.04	0.1	V	$\mathrm{I}_{\mathrm{O}}=400 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$		
			0.4	0.8	V	$\mathrm{I}_{\mathrm{O}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$		

Switching Specifications

For ADuM1100A:

Minimum Pulse Width	PW			40	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF},$ CMOS signal levels	4
Maximum Data Rate		25			MBd		
For ADuM1100B:							
Minimum Pulse Width	PW		6.7	10	ns		5
Maximum Data Rate		100	150		MBd		
For ADuM1100A and ADuM1100B:							
Propagation Delay Time to Logic Low Output	$\mathrm{t}_{\text {PHL }}$	3	6	9	ns		6
Propagation Delay Time to Logic High Output	$\mathrm{t}_{\text {PLH }}$	3	6	9	ns		
Pulse Width Distortion, $\left\|\mathrm{t}_{\text {PHL }}-\mathrm{t}_{\text {PLH }}\right\|$	PWD		1	2	ns		
Propagation Delay Skew	$\mathrm{t}_{\text {PSK1 }}$			3	ns		7
Propagation Delay Skew (at constant temp. and supply voltages)	$\mathrm{t}_{\text {PSK2 }}$			2	ns		
Output Rise Time (10-90\%)	t_{R}		2		ns		
Output Fall Time (90-10\%)	t_{F}		2		ns		
Common Mode Transient Immunity at Logic High Output	$\left\|\mathrm{CM}_{\mathrm{H}}\right\|$	25	35		$\mathrm{kV} / \mu \mathrm{S}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD1}}, \mathrm{~V}_{\mathrm{O}}>0.8 \mathrm{~V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{CM}} \\ & =1000 \mathrm{~V} \text {, transient magnitude } \\ & =800 \mathrm{~V} \end{aligned}$	8
Common Mode Transient Immunity at Logic Low Output	$\left\|\mathrm{CM}_{\mathrm{L}}\right\|$	25	35		$\mathrm{kV} / \mu \mathrm{S}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{I}}=0, \mathrm{~V}_{\mathrm{O}}<0.8 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \text { transient } \\ & \text { magnitude }=800 \mathrm{~V} \\ & \hline \end{aligned}$	
Input Dynamic Power Dissipation Capacitance	$\mathrm{C}_{\text {PD1 }}$		60		pF		9
Output Dynamic Power Dissipation Capacitance	$\mathrm{C}_{\text {PD2 }}$		20		pF		

Electrical Specifications, 3.3V Operation

$3.0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{DD} 2} \leq 3.6 \mathrm{~V}$. Test conditions that are not specified can be anywhere within the recommended operating range. All typical specifications are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD} 1}=\mathrm{V}_{\mathrm{DD} 2}=+3.3 \mathrm{~V}$.

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Fig.	Note
DC Specifications								
Input Supply Current	$\mathrm{I}_{\mathrm{DD1}(\mathrm{Q})}$		0.10	0.26	mA	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{DD} 1}$		
Output Supply Current	$\mathrm{I}_{\mathrm{DD2} \text { (Q) }}$		0.10	0.17	mA	$\mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{DD} 1}$		
Input Supply Current (25 MBd)	$\mathrm{I}_{\mathrm{DD1} 125)}$		2.6	3.0	mA	12.5 MHz logic signal freq.	1	
Output Supply Current (25 MBd)	$\mathrm{I}_{\mathrm{DD2} 25 \text {) }}$		0.9	1.1	mA	12.5 MHz logic signal freq.	2	
Input Supply Current (100 MBd)	$\mathrm{I}_{\text {DD1 } 100)}$		10	12	mA	50 MHz logic signal freq., ADuM1100B only	1	
Output Supply Current (100 MBd)	$\mathrm{I}_{\mathrm{DD} 2(100)}$		3.4	4.0	mA	50 MHz logic signal freq., ADuM1100B only	2	
Input Current	I_{I}	-10	0.01	10	$\mu \mathrm{A}$	$0 \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {DD } 1}$		
Logic High Output Voltage	V_{OH}	2.9	3.3	S	V	$\mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$		
		2.6	3.0			$\mathrm{I}_{\mathrm{O}}=-4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$		
Logic Low Output Voltage	V_{OL}	5	0.0	0.1	V	$\mathrm{I}_{\mathrm{O}}=20 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\text {IL }}$		
	-		0.03	0.04	V	$\mathrm{I}_{\mathrm{O}}=400 \mu \mathrm{~A}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$		
			0.3	0.4	V	$\mathrm{I}_{\mathrm{O}}=4 \mathrm{~mA}, \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$		

Switching Specifications

For ADuM1100A:

Minimum Pulse Width	PW			40	ns	$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF},$ CMOS signal levels	4
Maximum Data Rate		25			MBd		
For ADuM1100B:							
Minimum Pulse Width	PW		6.7	10	ns		5
Maximum Data Rate		100	150		MBd		
For ADuM1100A and ADuM1100B:							
Propagation Delay Time to Logic Low Output	$\mathrm{t}_{\text {PHL }}$	5	8	11	ns		6
Propagation Delay Time to Logic High Output	$\mathrm{t}_{\text {PLH }}$	5	8	11	ns		
Pulse Width Distortion, $\left\|\mathrm{t}_{\text {PHL }}-\mathrm{t}_{\text {PLH }}\right\|$	PWD		1	2	ns		
Propagation Delay Skew	$\mathrm{t}_{\text {PSK1 }}$			4	ns		7
Propagation Delay Skew (at constant temp. and supply voltages)	$\mathrm{t}_{\text {PSK2 }}$			3	ns		
Output Rise Time (10-90\%)	t_{R}		2		ns		
Output Fall Time (90-10\%)	t_{F}		2		ns		
Common Mode Transient Immunity at Logic High Output	$\left\|\mathrm{CM}_{\mathrm{H}}\right\|$	25	35		$\mathrm{KV} / \mu \mathrm{S}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{DD1}}, \mathrm{~V}_{\mathrm{O}}>0.8 \mathrm{~V}_{\mathrm{DD} 1}, \mathrm{~V}_{\mathrm{CM}} \\ & =1000 \mathrm{~V} \text {, transient magnitude } \\ & =800 \mathrm{~V} \end{aligned}$	8
Common Mode Transient Immunity at Logic Low Output	$\left\|\mathrm{CM}_{\mathrm{L}}\right\|$	25	35		$\mathrm{KV} / \mu \mathrm{S}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{I}}=0, \mathrm{~V}_{\mathrm{O}}<0.8 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CM}}=1000 \mathrm{~V}, \text { transient } \\ & \text { magnitude }=800 \mathrm{~V} \\ & \hline \end{aligned}$	
Input Dynamic Power Dissipation Capacitance	$\mathrm{C}_{\text {PD1 }}$		40		pF		9
Output Dynamic Power Dissipation Capacitance	$\mathrm{C}_{\text {PD2 }}$		13		pF		

Package Characteristics

Parameter	Symbol	Min.	Typ.	Max.	Units	Test Conditions	Note
Input-Output Momentary Withstand Voltage	$\mathrm{V}_{\text {ISO }}$	2500			$\mathrm{V}_{\text {RMS }}$	$\begin{gathered} \mathrm{RH} \leq 50 \%, \mathrm{t}=1 \mathrm{~min} ., \\ \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{gathered}$	10, 11
Resistance (Input-Output)	$\mathrm{R}_{\mathrm{I}-\mathrm{O}}$		10^{12}		Ω		10
Capacitance (Input-Output)	$\mathrm{C}_{\text {L-O }}$		2		pF	$\mathrm{f}=1 \mathrm{MHz}$	
Input Capacitance	$\mathrm{C}_{\text {I }}$		4.0		pF		12
Input IC Junction-to-Case Thermal Resistance	$\theta_{\text {jci }}$		TBD		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Thermocouple located at center underside of package	
Output IC Junction-to-Case Thermal Resistance	$\theta_{\text {jco }}$		TBD		${ }^{\circ} \mathrm{C} / \mathrm{W}$		
Package Power Dissipation	P_{PD}		Ir	TBD	mW		

Notes:

1. $\mathrm{V}_{\mathrm{DD} 1}$ and $\mathrm{V}_{\mathrm{DD} 2}$ must be kept within 1 V of each other.
2. Output transitions are triggered based on input thresholds having 300 mV of hysteresis.
3. 10 KGauss of external magnetic field can be tolerated up to a frequency of 100 KHz . Beyond 100 KHz , the maximum recommended magnetic field decreases by $20 \mathrm{~dB} /$ decade.
4. The minimum pulse width is the shortest pulsewidth at which the specified pulse width distortion is guaranteed.
5. The maximum data rate is the fastest data rate at which the specified pulse width distortion is guaranteed.
6. $t_{\text {PHL }}$ propagation delay is measured from the 50% level of the falling edge of the V_{I} signal to the 50% level of the falling edge of the V_{O} signal. $\mathrm{t}_{\text {PLH }}$ propagation delay is measured from the 50% level of the rising edge of the V_{I} signal to the 50% level of the rising edge of the V_{O} signal.
7. $t_{\text {PSK1 }}$ is the magnitude of the worst case difference in $t_{\text {PHL }}$ and/or $t_{\text {PLH }}$ that will be measured between units at any given temperature within the recommended operating conditions. $t_{\text {PSK2 }}$ is the magnitude of the worst case difference in $t_{\text {PHL }}$ and/or $t_{\text {PLH }}$ that will be measured between units at any given temperature and any given supply voltage within the recommended operating conditions.
8. CM_{H} is the maximum common mode voltage slew rate that can be sustained while maintaining $\mathrm{V}_{\mathrm{O}}>0.8 \mathrm{~V}_{\mathrm{DD} 2} . \mathrm{CM}_{\mathrm{L}}$ is the maximum common mode voltage slew rate than can be sustained while maintaining $\mathrm{V}_{\mathrm{O}}<0.8 \mathrm{~V}$. The common mode voltage slew rates apply to both rising and falling common mode voltage edges. The transient magnitude is the range over which the common mode is slewed.
9. The total unloaded supply current consumption (in $\mu \mathrm{A}$) at a given frequency (f) is calculated as follows: $\left(\mathrm{I}_{\mathrm{DD} 1}+\mathrm{I}_{\mathrm{DD} 2}\right)=\mathrm{C}_{\mathrm{PD}} * \mathrm{~V}_{\mathrm{DD}} * \mathrm{f}+\mathrm{I}_{\mathrm{DD} \text {-idle }}$, where f frequency in MHz .
10. Device considered a two-terminal device: pins $1,2,3$, and 4 shorted together and pins $5,6,7$, and 8 shorted together.
11. In accordance with UL1577, each ADuM1100 is proof testing by applying an insulation test voltage $\geq 3000 \mathrm{~V}_{\mathrm{rms}}$ for 1 second (leakage detection current limit, $\mathrm{I}_{\mathrm{I}-\mathrm{O}} \leq 5 \mu \mathrm{~A}$).
12. Input capacitance is measured at pin $2\left(\mathrm{~V}_{\mathrm{I}}\right)$.

Figure 1. Typical Input Supply Current vs. Logic Signal Frequency for 5V and 3.3V Operation.

Figure 2. Typical Output Supply Current vs. Logic Signal Frequency for 5V and 3.3V Operation.

Package Outline Drawing:

8-Lead Small Outline
(R-8)

Application Information

$\boldsymbol{\mu} \boldsymbol{n}$ Isolation is a trademark of Analog Devices.

