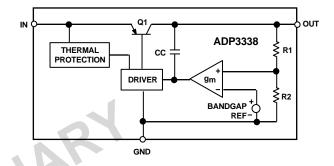
ANALOG DEVICES

High Accuracy Ultralow I_Q , 1 A, any CAPTM Low Dropout Regulator


ADP3338

Preliminary Technical Data

FEATURES

High Accuracy Over Line and Load: ±0.9% @ +25°C, ±1.5% Over Temperature
Ultralow Dropout Voltage: 700 mV (Typ) @ 1 A Requires Only C_o = 1.0 μF for Stability anyCAP = Stable with Any Type of Capacitor (Including MLCC)
Current and Thermal Limiting
Low Noise
+2.6 V to +12 V Supply Range
-40°C to +85°C Ambient Temperature Range
SOT-223 Package

FUNCTIONAL BLOCK DIAGRAM

APPLICATIONS Notebook, Palmtop Computers SCSI Terminators Battery Powered Systems PCMCIA Regulator Bar Code Scanners Camcorders, Cameras

GENERAL DESCRIPTION

The ADP3338 is a member of the ADP330x family of precision low dropout anyCAP voltage regulators. The ADP3338 operates with an input voltage range of +2.6 V to +12 V and delivers a load current up to 1 A. The ADP3338 stands out from the conventional LDOs with a novel architecture and an enhanced process that enables it to offer performance advantages and higher output current than its competition. Its patented design requires only a 1.0 µF output capacitor for stability. This device is insensitive to output capacitor Equivalent Series Resistance (ESR), and is stable with any good quality capacitor, including ceramic (MLCC) types for space-restricted applications. The ADP3338 achieves exceptional accuracy of $\pm 0.9\%$ at room temperature and $\pm 1.5\%$ over temperature, line and load variations. The dropout voltage of the ADP3338 is only 700 mV (typical) at 1 A. This device also includes a safety current limit, thermal overload protection and a shutdown feature. In shutdown mode, the ground current is reduced to less than 2 µA. The ADP3338 has ultralow quiescent current 70 µA (typ) in light load situations.

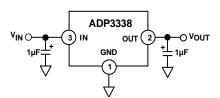


Figure 1. Typical Application Circuit

REV. PrB 1/6/00

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

ADP3338-SPECIFICATIONS^{1,2} ($V_{IN} = 7.0 \text{ V}, C_{IN} = C_{OUT} = 1.0 \mu\text{F}, T_A = -40^{\circ}\text{C}$ to +85°C, unless otherwise noted)

Parameter	Symbol	Symbol Conditions		Тур	Max	Units
OUTPUT						
Voltage Accuracy ³	V _{OUT}	$V_{IN} = V_{OUTNOM} + 0.8 V$ to +12 V	-0.9		+0.9	%
		$I_L = 0.1 \text{ mA to } 1 \text{ A}$				
		$T_A = +25^{\circ}C$				
		$V_{\rm IN}$ = $V_{\rm OUTNOM}$ +0.8 V to +12 V	-1.5		+1.5	%
		$I_L = 0.1 \text{ mA to } 1 \text{ A}$				
		$T_A = -20^{\circ}C$ to $85^{\circ}C$				<i></i>
		$V_{IN} = V_{OUTNOM} + 0.8 V \text{ to } + 12 V$	-1.5		+1.5	%
		$I_{\rm L} = 0.1 \text{ mA to } 750 \text{ mA}$				
Line Degulation ³		$T_{A} = -40^{\circ}C$ to $85^{\circ}C$		0.04		mV/V
Line Regulation ³		$V_{IN} = V_{OUTNOM} + 0.8 V \text{ to } +12 V$ $T_A = +25^{\circ}C$		0.04		III V / V
Load Regulation		$I_A = +25 \text{ C}$ $I_L = 0.1 \text{ mA to } 1 \text{ A}$		0.04		mV/mA
Load Regulation		$T_{\rm A} = +25^{\circ}{\rm C}$		0.04		
Dropout Voltage	VDROP	$V_{OUT} = 98\%$ of V_{OUTNOM}				
210pour Fondge	• DROF	$I_L = 1 A$		500	700	mV
		$I_{L} = 500 \text{ mA}$		250	350	mV
		$I_L = 100 \text{ mA}$		120	150	mV
		$I_L = 0.1 \text{ mA}$		80	130	mV
Peak Load Current	I _{LDPK}	$V_{\rm IN} = V_{\rm OUTNOM} + 1 V$		1.4		А
Output Noise	V _{NOISE}	$f = 10 \text{ Hz}-100 \text{ kHz}, C_L = 10 \mu\text{F}$		47		μV rms
		$I_L = 1 A, C_{NR} = 10 nF$				
		$f = 10 \text{ Hz}-100 \text{ kHz}, C_L = 10 \mu\text{F}$		95		μV rms
		$I_{L} = 1 A, C_{NR} = 0 nF$				
GROUND CURRENT						
In Regulation	I _{GND}	$I_L = 1 A$		10	50	mA
		$I_L = 500 \text{ mA}$		5	25	mA
		$I_L = 100 \text{ mA}$		1	5	mA
		$I_L = 0.1 \text{ mA}$		70	130	μA
In Dropout	I _{GND}	$V_{IN} = V_{OUTNOM} - 100 \text{ mV}$		80	150	μA
In Shutdown	I _{GNDSD}	$\frac{I_{L}}{SD} = 0 \text{ V}, \text{V}_{IN} = 12 \text{ V}$		0.01	2	μA
SHUTDOWN						•
Threshold Voltage	V	ON	2.0			V
i mesnoru vonage	$V_{\overline{T}\overline{H}\overline{S}\overline{D}}$	OFF	۵.0		0.4	V V
SD Input Current	$I_{\overline{S}\overline{D}}$	$0 \le \overline{SD} \le 5 V$		1.4	0.4 6	ν μA
Output Current In Shutdown	$I_{\overline{OSD}}$	$T_{A} = +25^{\circ}C$ $V_{IN} = 12 V$		1.1	1	μΑ
Surpar Surfair in Shutdown	-05D	$T_{A} = +85^{\circ}C$ $V_{IN} = 12^{\circ}V$ $T_{A} = +85^{\circ}C$ $V_{IN} = 12^{\circ}V$			2	μΑ

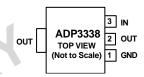
NOTES

1 Ambient temperature of +85°C corresponds to a junction temperature of +125°C under typical full load test conditions.

2 Application stable with no load. 3 $V_{IN} = 2.6V$ for models with $V_{OUTNOM} \le 1.85V$.

Specifications subject to change without notice.

ADP3338


ABSOLUTE MAXIMUM RATINGS*

Input Supply Voltage0.3 V to +16 V
Power Dissipation Internally Limited
Operating Ambient Temperature Range40°C to +85°C
Operating Junction Temperature Range -40°C to +125°C
$\theta_{JA} \dots + 62.3^{\circ}C/W$
θ_{JC}
Storage Temperature Range65°C to +150°C
Lead Temperature Range (Soldering 10 sec)+300°C
Vapor Phase (60 sec)+215°C
Infrared (15 sec)+220°C
*This is a stress rating only; operation beyond these limits can cause the device to be permanently damaged.

PIN DESCRIPTION

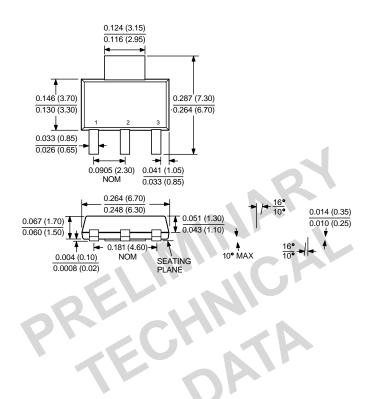
Pin	Name	Function
1 2	GND OUT	Ground Pin. Output of the Regulator. Bypass to ground with a 1.0 μ F or larger capacitor.
3	IN	Regulator Input.

PIN CONFIGURATION

ORDERING GUIDE

ORDERING GUIDE				
Model	Output Voltage*	Package Option	Marking Code	
ADP3338ARM-1.8	1.8 V	RT (SOT-223)	LGA	
ADP3338ARM-2.5	2.5 V	RT (SOT-223)	LGC	
ADP3338ARM-2.85	2.85 V	RT (SOT-223)	LGD	
ADP3338ARM-3.3	3.3 V	RT (SOT-223)	LGE	
ADP3338ARM-5	5 V	RT (SOT-223)	LGF	

CAUTION -


ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this device features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

3-Lead Surface Mount RT-3 (SOT-223)

