

CMOS, Low Voltage, Serially Controlled Matrix Switches

Preliminary Technical Data

ADG738/ADG739

FEATURES

Three wire Serial Interface +2.7 V to +5.5 V Single Supply Low On Resistance (4 Ω) Low On Resistance Flatness Low Leakage Single 8 to 1 Multiplexer ADG738 Dual 4 to 1 Multiplexer ADG739 Power on Reset Fast Switching Times Low Power Consumption TTL/CMOS compatible

APPLICATIONS Data Acquisition Systems

Communication Systems Relay replacement Audio and Video Switching

GENERAL DESCRIPTION

The ADG738 and ADG739 are CMOS analog matrix switches with a serially controlled three wire interface. The ADG738 is an 8 channel matrix switch, while the ADG739 is a dual 4 channel matrix switch. On resistance is closely matched between switches and very flat over the full signal range.

The ADG738 and ADG739 utilize a three wire serial interface that is compatible with SPI^{TM} , $QSPI^{TM}$ and MICROWIRETM interface standards. The output of the shift register DOUT enables a number of these parts to be daisy chained. On power up of the devices, the internal shift register contains all zeros and all switches are in the OFF state.

Each switch conducts equally well in both direction when on, making these parts suitable for both multiplexing and demultiplexing applications. As each switch is turned on or off by a seperate bit, these parts can also be configured as a type of switch array, where any, all or none of the 8 switches may be closed at any time. The input signal range extends to the supply rails.

SPI and QSPI are trademarks of Motorola, Inc. MICROWIRE is a trademark of National Semiconductor Corporation.

REV. PrC August '99

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

FUNCTIONAL BLOCK DIAGRAMS

All channels exhibit break before make switching action preventing momentary shorting when switching channels. The ADG738 and ADG739 are available in 16 lead TSSOP package.

PRODUCT HIGHLIGHTS

- 1. Three Wire Serial Interface.
- 2. Single Supply Operation. The ADG738 and ADG739 are fully specified and guaranteed with +3 V and +5 V supply rails.
- 3. Low R_{ON} (4 Ω).
- 4. Any configuration of switches may be on or off at any one time.
- 5. Break before make switching action.
- 6. Small 16 lead TSSOP package.

ADG738/ADG739-SPECIFICATIONS¹

(V_{DD} = +5 V ±10%, GND = 0 V. All specifications -40°C to +85°C unless otherwise noted)

	BV	ersion		
Parameter	+25°C	-40°C to +85°C	Units	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		$0~V~to~V_{\mathrm{DD}}$	V	
On-Resistance (R _{ON})	2.5	6 . 40 . DD	Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_S = 10 \text{ mA};$
2 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	4	4.5	Ω max	Test Circuit 1;
On-Resistance Match Between	_	0.1	Ω typ	Tost Should 1,
Channels (ΔR_{ON})		0.4	Ω max	$V_S = 0 \text{ V to } V_{DD}$, $Is = 10 \text{ mA}$;
On-Resistance Flatness (R _{FLAT(ON)})	0.75	V -	Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_S = 10 \text{ mA};$
On resistance rathess (TFLAT(ON))	00	1.2	Ω max	13 0 1 to 1 _{DD} , 13 10 11111,
LEAVACE CUIDDENIES		·	-	
LEAKAGE CURRENTS	. 0. 01		A 4	V 45 V/1 V V 1 V/45 V.
Source OFF Leakage I _S (OFF)	±0.01	. 0. 0	nA typ	$V_D = 4.5 \text{ V/1 V}, V_S = 1 \text{ V/4.5 V};$
Desir OFF Lasks to L (OFF)	±0.1	± 0.3	nA max	Test Circuit 2;
Drain OFF Leakage I _D (OFF)	±0.01	0.0	nA typ	$V_D = 4.5 \text{ V/1 V}, V_S = 1 \text{ V/4.5 V};$
Channel ON Labor I (ON)	±0.1	± 0.3	nA max	Test Circuit 3;
Channel ON Leakage I_D (ON)	±0.01	. 0. 0	nA typ	$V_D = V_S = 1 \text{ V, or } 4.5\text{V};$
	±0.1	±0.3	nA max	Test Circuit 4;
DIGITAL INPUTS		40111		
Input High Voltage, V _{INH}		2.4	V min	
Input Low Voltage, V _{INL}		0.8	V max	
Input Current, I _{INL} or I _{INH}	0.005		μA typ	$V_{IN} = V_{INL}$ or V_{INH}
		±0.1	μA max	
C _{IN} , Digital Input Capacitance	3		pF typ	
DIGITAL OUTPUTS				
DOUT Output High Voltage		V_{DD}	max	
DOUT Output Low Voltage		0.4	max	
DYNAMIC CHARACTERISTICS ²				
t _{ON}	30		ns typ	$R_L = 300 \ \Omega, \ C_L = 35 \ pF;$
ON	00	TBD	ns max	$V_S = 3 \text{ V}$, Test Circuit 5;
$t_{ m OFF}$	21	100	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$;
Off	~ 1	TBD	ns max	$V_S = 3 \text{ V}$, Test Circuit 5;
Break-Before-Make Time Delay, t _D	15	122	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
Droum Derore Mane Time Demy, ep	10	1	ns min	$V_S = 3.5 \text{ V}$, Test Circuit 6
Charge Injection	5	_	pC typ	$V_S = 2 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF};$
J. J			I ST	Test Circuit 8;
Off Isolation	-60		dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 10 MHz;$
			31	Test Circuit 9;
Channel to Channel Crosstalk	-60		dB typ	$R_L = 50 \Omega, C_L = 5 pF, f = 10 MHz;$
				Test Circuit 10;
-3 dB Bandwidth	200		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 11;
C_S (OFF)	TBD		pF typ	_
C_D (OFF)	TBD		pF typ	
C_D , C_S (ON)	TBD		pF typ	
POWER REQUIREMENTS				$V_{DD} = +5.5 \text{ V}$
	10		μA typ	
<i>DD</i>		TBD		
POWER REQUIREMENTS I _{DD}	10	TBD	μΑ typ μΑ max	$V_{\rm DD} = +5.5 \text{ V}$ Digital Inputs = 0 V or 5.5 V

-2-

REV. PrC

¹Temperature range is as follows: B Version: -40°C to +85°C. ²Guaranteed by design, not subject to production test.

Specifications subject to change without notice.

Preliminary Technical Data SPECIFICATIONS¹ ($V_{DD} = 3V \pm 10\%$, GND = 0 V. All specifications -40°C to +85°C unless otherwise noted.)

	B Version			
Parameter	+25°C	-40°C to +85°C	Units	Test Conditions/Comments
ANALOG SWITCH				
Analog Signal Range		0 V to V_{DD}	V	
On-Resistance (R _{ON})	4.5	5	Ω typ	$V_S = 0 \text{ V to } V_{DD}, I_S = 10 \text{ mA};$
on resistance (regg)	1.0	8	Ω max	Test Circuit 1;
On-Resistance Match Between		· ·	22 max	Test Offett 1,
Channels (ΔR_{ON})	0.1		Ω typ	$V_S = 0 \text{ V to } V_{DD}$, $Is = 10 \text{ mA}$;
Chamicis (Micolly)	0.1	0.4	Ω max	VS = 0 V to VDD, 15 = 10 Int.
On-Resistance Flatness (R _{FLAT(ON)})		2.5	Ω max	$V_S = 0 \text{ V to } V_{DD}, I_S = 10 \text{ mA};$
On resistance Trachess (replan (ON))		2.0	22 mux	VS = V to VDD, IS = 10 III.1,
LEAKAGE CURRENTS				$V_{\rm DD} = +3.3 \text{ V}$
Source OFF Leakage I _S (OFF)	± 0.01		nA typ	$V_S = 3 \text{ V/1 V}, V_D = 1 \text{ V/3 V};$
8 3 ()	± 0.1	± 0.3	nA max	Test Circuit 2;
Drain OFF Leakage I _D (OFF)	± 0.01		nA typ	$V_S = 1 \text{ V/3 V}, V_D = 3 \text{ V/1 V};$
8 8 7	± 0.1	±0.3	nA max	Test Circuit 3;
Channel ON Leakage I _D (ON)	± 0.01		nA typ	$V_S = V_D = +1 \text{ V or } +3 \text{ V};$
a a garage of the contract of	± 0.1	±0.3	nA max	Test Circuit 4;
DIGITAL INPUTS				
		2.0	V min	
Input High Voltage, V		0.4	V max	
Input Low Voltage, V _{INL}	0.005	0.4		$V_{IN} = V_{INL}$ or V_{INH}
Input Current, I _{INL} or I _{INH}	0.003	±0.1	μΑ typ μΑ max	$\mathbf{v}_{\mathrm{IN}} = \mathbf{v}_{\mathrm{INL}} \mathbf{or} \mathbf{v}_{\mathrm{INH}}$
C _{IN} , Digital Input Capacitance	3	±0.1		
C _{IN} , Digital Input Capacitance	3		pF typ	
DIGITAL OUTPUTS		n		
DOUT Output High Voltage		V_{DD}	max	
DOUT Output Ingil Voltage		0.4	max	
		0.1	mux	
DYNAMIC CHARACTERISTICS ²	2 -			D 000 0 G 07 F
t_{ON}	35	mp.p	ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
	۰.~	TBD	ns max	$V_S = 2 V$, Test Circuit 5;
t _{OFF}	27	TID D	ns typ	$R_L = 300 \Omega, C_L = 35 pF;$
	1 5	TBD	ns max	$V_S = 2 V$, Test Circuit 5;
Break-Before-Make Time Delay, t_D	15		ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	-	1	ns min	$V_S = 2 \text{ V}$, Test Circuit 6
Charge Injection	5		pC typ	$V_S = 1.5 \text{ V}, R_S = 0 \Omega, C_L = 1 \text{ nF};$
000 1 1 1	0.0		ID 4	Test Circuit 8;
Off Isolation	-60		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$;
Channel to Channel Countille	0.0		JD	Test Circuit 9;
Channel to Channel Crosstalk	-60		dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 10 MHz$;
2 dD Dandwidth	200		МЦ~ +	Test Circuit 10;
-3 dB Bandwidth	200 TPD		MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$, Test Circuit 11
$C_{\rm S}$ (OFF)	TBD		pF typ	
$C_{\rm D}$ (OFF)	TBD TBD		pF typ	
$C_D, C_S (ON)$	עמו		pF typ	
POWER REQUIREMENTS				$V_{\rm DD}$ = +3.3 V
I_{DD}	10		μA typ	Digital Inputs = 0 V or 3.3 V
		TBD	μA max	

REV. PrC -3-

¹Temperature ranges are as follows: B Versions: -40°C to +85°C.

 $^{^2\}mbox{Guaranteed}$ by design, not subject to production test.

 $Specifications \, subject \, to \, change \, without \, notice.$

TIMING CHARACTERISTICS^{1,2} (V_{DD} = +2.5V to +5.5V. All specifications -40°C to +85°C, unless otherwise noted.)

Parameter	Limit at T _{MIN} , T _{MAX}	Units	Conditions/Comments
t_1	33	ns min	SCLK Cycle time
t_2	13	ns min	SCLK High Time
t_3	13	ns min	SCLK Low Time
t_4	0	ns min	SYNC to SCLK active edge setup time
t_5	5	ns min	Data Setup Time
t_6	4.5	ns min	Data Hold Time
t_7	0	ns min	SCLK Falling edge to $\overline{\text{SYNC}}$ Rising edge
t ₈	33	ns min	Minimum SYNC high time
t_9	20	ns min	SCLK rising edge to DOUT valid

NOTES

 $Specifications\, subject\, to\, change\, without\, notice.$

Figure 1. 3-Wire Serial Interface Timing Diagram.

-4-

 $^{^1}See$ Figure 1. 2All input signals are specified with tr =tf = 5ns (10% to 90% of $V_{\rm DD})$ and timed from a voltage level of ($V_{\rm IL}+V_{\rm IH})/2$.

PIN FUNCTION DESCRIPTION

ADG738	ADG739	Mnemonic	Function
1	1	SCLK	Serial Clock Input. Data is clocked into the input shift register on the falling edge of the serial clock input. These devices can accommodate serial input rates of up to 30MHz.
2	-	RESET	Active low control input that clears the input register and turns all switches to the OFF condition.
3	3	DIN	Serial Data Input. Data is clocked into the 8-bit input register on the falling edge of the serial clock input.
4,5,6,7	4,5,6,7	SXX	Source. May be an input or output.
8	8,9	DX	Drain. May be an input or output.
9,10,11,12	10,11,12,13	SXX	Source. May be an input or output.
13	14	V_{DD}	Power Supply Input. These parts can be operated from a supply of +2.5V to +5.5V.
14	15	GND	Ground reference.
15	16	DOUT	Data Output. This allows a number a parts to be daisy chained. Data is clocked out of the input shift register on the rising edge of SCLK.
16	2	SYNC	Active Low Control Input. This is the frame synchronization signal for the input data. When $\overline{\text{SYNC}}$ goes low, it powers on the SCLK and DIN buffers and the input shift register is enabled. Data is transferred on the falling edges of the following 8 clocks. Taking $\overline{\text{SYNC}}$ high, updates the switches.

PIN CONFIGURATIONS

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADG738BRU ADG739BRU	$^{-40}$ $^{\rm o}$ C to $^{+85}$ $^{\rm o}$ C $^{-40}$ $^{\rm o}$ C to $^{+85}$ $^{\rm o}$ C	Thin Shrink Small Outline Package (TSSOP) Thin Shrink Small Outline Package (TSSOP)	RU-16 RU-16

REV. PrC -5-

ADG738/ADG739

Preliminary Technical Data

TERMINOLOGY

R_{ON}	Ohmic resistance between D and S.	t_{OFF}	Delay between applying the digital control input and the output switching off.
R _{FLAT(ON)}	Flatness is defined as the difference between the maximum and minimum value of on- resistance as measured over the specified	Off Isolation	A measure of unwanted signal coupling through an "OFF" switch.
	analog signal range.	Crosstalk	A measure of unwanted signal which is
I _S (OFF)	Source leakage current with the switch "OFF."		coupled through from one channel to another as a result of parasitic capacitance.
I _D (OFF)	Drain leakage current with the switch "OFF."	Charge Injection	A measure of the glitch impulse transferred from the digital input to the analog output
I_D , I_S (ON)	Channel leakage current with the switch "ON."	Bandwidth	during switching. The frequency at which the output is attenuated by -3dBs.
$V_D(V_S)$	Analog voltage on terminals D, S.	On Pasnansa	The Frequency response of the "ON"
C _S (OFF)	"OFF" switch source capacitance. Measured with reference to ground.		switch.
C _D (OFF)	"OFF" switch drain capacitance. Measured with reference to ground.	On Loss	The voltage drop across the "ON" switch seen on the On Response vs. Frequency plot as how many dBs the signal is away from
$C_D, C_S(ON)$	"ON" switch capacitance. Measured with reference to ground.	V _{INL}	0dB. Maximum input voltage for logic "0".
C_{IN}	Digital input capacitance.	V _{INH}	Minimum input voltage for logic "1".
t_{ON}	Delay between applying the digital control input and the output switching on. See test circuit 4.	$I_{INL}(I_{INH})$ I_{DD}	Input current of the digital input. Positive supply current.

ABSOLUTE MAXIMUM RATINGS1

 $(T_A = +25^{\circ}C \text{ unless otherwise noted})$

 V_{DD} to GND -0.3 V to +7 VAnalog, Digital Inputs² -0.3V to $V_{\rm DD}$ +0.3 V or 30 mA, Whichever Occurs First Peak Current, S or D (Pulsed at 1 ms, 10% Duty Cycle max) Continuous Current, each S 30mA Continuous Current D, ADG729 80mA Continuous Current D, ADG728 120mA Operating Temperature Range Industrial (B Version) -40°C to +85°C Storage Temperature Range -65°C to +150°C Junction Temperature +150°C

 $\begin{array}{lll} TSSOP\ Package,\ Power\ Dissipation & mW\\ \theta_{JA}\ Thermal\ Impedance & 150.4^{\circ}C/W\\ \theta_{JC}\ Thermal\ Impedance & 27.6^{\circ}C/W\\ Lead\ Temperature,\ Soldering\\ Vapor\ Phase\ (60\ sec) & +215^{\circ}C\\ Infrared\ (15\ sec) & +220^{\circ}C\\ ESD & 2kV \end{array}$

NOTES

-6-

¹Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.

²Overvoltages at IN, S or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

CAUTION –

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG738/ADG739 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

REV. PrC

GENERAL DESCRIPTION

The ADG738 and ADG739 are serially controlled, 8 channel and dual 4 channel matrix switches respectively. While providing the normal multiplexing and demultiplexing functions, these parts also provide the user with some more flexibility as to where their signal may be routed. Each bit of the 8 bit serial word corresponds to one switch of the part. A logic '1' in the particular bit position turns on the switch, while a logic '0' turns the switch off. Because each switch is independently controlled by an individual bit, this provides the option of having any, all or none of the switches ON. This feature may be particularly useful in the demultiplexing application where the user may wish to direct one signal from the drain to a number of outputs (sources). Care must be taken, however, in the multiplexing situation where a number of inputs may be shorted together, (only separated by the small on resistance of the switch).

POWER ON RESET

On power up of the device, all switches will be in the OFF condition and the internal shift register is filled with zeros and will remain so until a valid write takes place.

SERIAL INTERFACE

The ADG738 and ADG739 have a three wire serial interface (SYNC, SCLK, and DIN), which is compatible with SPI, QSPI, MICROWIRE interface standards and most DSP's. Figure 1 shows the timing diagram of a typical write sequence.

Data is written to the 8-bit shift register via DIN under the control of the \overline{SYNC} and SCLK signals. Data may be written to the shift register in more or less than 8 bits. In each case the shift register retains the last eight bits that were written.

When \$\overline{SYNC}\$ goes low, the input shift register is enabled. Data from DIN is clocked into the shift register on the falling edge of SCLK. Each bit of the eight bit word corresponds to one of the eight switches. Figure 2 shows the contents of the input shift register. Data appears on the DOUT pin on the rising edge of SCLK suitable for daisy chaining, delayed of course by eight bits. When all eight bits have been written into the shift register, the \$\overline{SYNC}\$ line is brought high again. The switches are updated with the new configuration and the input shift register is disabled. With \$\overline{SYNC}\$ held high, any further data or noise on the DIN line will have no effect on the shift register.

Figure 2. Input Shift Register Contents

TEST CIRCUITS TBD

REV. PrC -7-

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

16-Lead TSSOP (RU-16)

