Preliminary Technical Data

FEATURES

Three wire Serial Interface
+2.7 V to +5.5 V Single Supply
Low On Resistance (4Ω)
Low On Resistance Flatness
Low Leakage
Single 8 to 1 Multiplexer ADG738
Dual 4 to 1 Multiplexer ADG739
Power on Reset
Fast Switching Times
Low Power Consumption
TTL/CMOS compatible

APPLICATIONS

Data Acquisition Systems

Communication Systems

Relay replacement
 Audio and Video Switching

GENERAL DESCRIPTION

The ADG738 and ADG 739 are CMOS analog matrix switches with a serially controlled three wire interface. The ADG738 is an 8 channel matrix switch, while the ADG739 is a dual 4 channel matrix switch. On resistance is closely matched between switches and very flat over the full signal range.
The ADG738 and ADG739 utilize a three wire serial interface that is compatible with $\mathrm{SPI}^{\top M}, \mathrm{QSPI}{ }^{\top}{ }^{\mathrm{M}}$ and MICROWIRE ${ }^{\text {TM }}$ interface standards. The output of the shift register DOUT enables a number of these parts to be daisy chained. On power up of the devices, the internal shift register contains all zeros and all switches are in the OFF state.
Each switch conducts equally well in both direction when on, making these parts suitable for both multiplexing and demultiplexing applications. As each switch is turned on or off by a seperate bit, these parts can also be configured as a type of switch array, where any, all or none of the 8 switches may be closed at any time. The input signal range extends to the supply rails.

SPI and QSPI are trademarks of M otorola, Inc.
MICROWIRE is a trademark of National Semiconductor Corporation.

REV. PrC August ‘99

[^0]
FUNCTIONAL BLOCK DIAGRAMS

All channels exhibit break before make switching action preventing momentary shorting when switching channels.
The ADG738 and ADG739 are available in 16 lead TSSOP package.

PRODUCT HIGHLIGHTS

1. Three Wire Serial Interface.
2. Single Supply Operation. The ADG738 and ADG739 are fully specified and guaranteed with +3 V and +5 V supply rails.
3. Low $\mathrm{R}_{\text {on }}(4 \Omega)$.
4. Any configuration of switches may be on or off at any one time.
5. Break before make switching action.
6. Small 16 lead TSSOP package.

ADG738/ADG739- SPECIFICATIONS ${ }^{1}$

$\left(\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{GND}=0 \mathrm{~V}\right.$. All specifications $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ unless otherwise noted)

NOTES
${ }^{1} \mathrm{~T}$ emperature range is as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
${ }^{2} \mathrm{G}$ uaranteed by design, not subject to production test.
Specifications subject to change without notice.

Parameter	$\begin{array}{r} B \\ +25^{\circ} \mathrm{C} \end{array}$	on $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On-Resistance ($\mathrm{Ron}_{\mathrm{on}}$) On-Resistance Match Between C hannels ($\Delta R_{\text {on }}$) On-Resistance Flatness ($\mathrm{R}_{\mathrm{FLAT}(\mathrm{ON})}$)	$\begin{aligned} & 4.5 \\ & 0.1 \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 5 \\ & 8 \\ & \\ & 0.4 \\ & 2.5 \end{aligned}$	V Ω typ Ω max Ω typ Ω max Ω max	$V_{S}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA} \text {; }$ Test Circuit 1; $\begin{aligned} & \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{IS}=10 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA} ; \end{aligned}$
LEAKAGE CURRENTS Source OFF Leakage IS (OFF) Drain OFF Leakage I_{D} (OFF) Channel ON Leakage $I_{D}(O N)$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.1 \\ & \pm 0.01 \\ & \pm 0.1 \\ & \pm 0.01 \\ & \pm 0.1 \end{aligned}$	$\begin{aligned} & \pm 0.3 \\ & \pm 0.3 \\ & \pm 0.3 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 3 \mathrm{~V} ; \end{aligned}$ T est Circuit 2; $\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V} / 3 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=3 \mathrm{~V} / 1 \mathrm{~V} ;$ T est Circuit 3; $V_{S}=V_{D}=+1 V \text { or }+3 \mathrm{~V} \text {; }$ T est Circuit 4;
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, $\mathrm{V}_{\text {INL }}$ Input Current, $\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$ $\mathrm{C}_{\text {IN }}$, Digital Input Capacitance	0.005	$\begin{array}{r} 2.0 \\ 0.4 \\ \pm 0.1 \end{array}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$ pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DIGITAL OUTPUTS DOUT Output High Voltage DOUT Output Low Voltage		$\begin{aligned} & V_{D D} \\ & 0.4 \end{aligned}$	max max	
DYNAMIC CHARACTERISTICS ${ }^{2}$ t_{on} $t_{\text {OFF }}$ Break-Before- M ake Time Delay, t_{D} Charge Injection Off Isolation Channel to Channel Crosstalk -3 dB Bandwidth C_{s} (OFF) $C_{D}(O F F)$ $C_{D}, C_{S}(O N)$	$\begin{aligned} & 35 \\ & 27 \\ & 15 \\ & 5 \\ & -60 \\ & \\ & -60 \\ & \\ & 200 \\ & \text { T B D } \\ & \text { T B D } \\ & \text { T B D } \end{aligned}$	$\begin{aligned} & \text { TBD } \\ & \text { TBD } \\ & 1 \end{aligned}$	ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ MHz typ pF typ pF typ pF typ	
POWER REQUIREMENTS $I_{D D}$	10	T B D	$\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 3.3 \mathrm{~V} \end{aligned}$

NOTES
${ }^{1} \mathrm{~T}$ emperature ranges are as follows: B V ersions: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
${ }^{2} \mathrm{G}$ uaranteed by design, not subject to production test.
Specifications subject to change without notice.

TIMINGCHARACTERISTICS ${ }^{1,2}{ }_{\left(v_{00}=\right.}=22.5 \mathrm{vt}$ to +5.5 V . Al specifications $.40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted.)

Parameter	Limit at $\mathrm{T}_{\text {MIN }}, \mathrm{T}_{\text {MAX }}$	Units	Conditions/Comments
t_{1}	33	ns min	SCLK Cycle time
t_{2}	13	ns min	SCLK High Time
t_{3}	13	ns min	SCLK Low Time
t_{4}	0	ns min	$\overline{\text { SYNC to SCLK }}$ active edge setup time
t_{5}	5	ns min	Data Setup Time
t_{6}	4.5	ns min	Data Hold Time
t_{7}	0	ns min	SCLK Falling edge to $\overline{\text { SYNC Rising edge }}$
t_{8}	33	ns min	M inimum $\overline{\text { SYNC }}$ high time
t_{9}	20	ns min	SCLK rising edge to DOUT valid

NOTES

${ }^{1}$ See Figure 1.
${ }^{2}$ All input signals are specified with $\operatorname{tr}=t \mathrm{f}=5 \mathrm{~ns}\left(10 \%\right.$ to 90% of $\left.\mathrm{V}_{\mathrm{DD}}\right)$ and timed from a voltage level of $\left(\mathrm{V}_{I L}+\mathrm{V}_{I H}\right) / 2$.
Specifications subject to change without notice.

Figure 1. 3-Wire Serial Interface Timing Diagram.

Preliminary Technical Data

PIN FUNCTION DESCRIPTION

ADG738	ADG739	Mnemonic	Function
1	1	SCLK	Serial Clock Input. Data is clocked into the input shift register on the falling edge of the serial clock input. These devices can accomodate serial input rates of up to 30 M Hz .
2	-	$\overline{\mathrm{R}} \overline{\mathrm{E}} \overline{\mathrm{E}} \overline{\mathrm{T}}$	Active low control input that clears the input register and turns all switches to the OFF condition.
3	3	DIN	Serial Data Input. Data is clocked into the 8 -bit input register on the falling edge of the serial clock input.
4,5,6,7	4,5,6,7	SXX	Source. M ay be an input or output.
8	8,9	D X	Drain. M ay be an input or output.
9,10,11,12	10,11,12,13	SXX	Source. M ay be an input or output.
13	14	$V_{D D}$	Power Supply Input. These parts can be operated from a supply of +2.5 V to +5.5 V .
14	15	GND	Ground reference.
15	16	DOUT	Data Output. This allows a number a parts to be daisy chained. Data is clocked out of the input shift register on the rising edge of SCLK.
16	2	$\overline{\mathrm{S}} \overline{\mathrm{Y}} \overline{\mathrm{N}} \overline{\mathrm{C}}$	Active Low Control Input. This is the frame synchronization signal for the input data. When SYNC goes low, it powers on the SCLK and DIN buffers and the input shift register is enabled. Data is transferred on the falling edges of the following 8 clocks. Taking $\overline{\text { SYNC }}$ high, updates the switches.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADG 738BRU	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Thin Shrink Small O utline Package (TSSOP)	RU-16
ADG739BRU	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Thin Shrink Small O utline Package (TSSOP)	RU-16

TERMINOLOGY

$\mathrm{R}_{\text {ON }}$	Ohmic resistance between D and S.
$\mathrm{R}_{\text {flat (ON) }}$	Flatness is defined as the difference between the maximum and minimum value of onresistance as measured over the specified analog signal range.
I_{S} (OFF)	Source leakage current with the switch "OFF."
$I_{\text {D }}(O F F)$	Drain leakage current with the switch "OFF."
$I_{D}, I_{S}(0 N)$	Channel leakage current with the switch "ON."
$\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{S}}\right)$	Analog voltage on terminals D, S.
$C_{S}(O F F)$	"OFF" switch source capacitance. M easured with reference to ground.
$C_{\text {d }}(0 F F)$	"OFF" switch drain capacitance. M easured with reference to ground.
$C_{D}, C_{S}(0 N)$	"ON" switch capacitance. M easured with reference to ground.
$\mathrm{C}_{\text {IN }}$	Digital input capacitance.
t_{on}	Delay between applying the digital control input and the output switching on. See test circuit 4.

$t_{0 F F}$

Off Isolation A measure of unwanted signal coupling through an "OFF" switch.
Crosstalk A measure of unwanted signal which is coupled through from one channel to another as a result of parasitic capacitance.
Charge A measure of the glitch impulse transferred Injection from the digital input to the analog output during switching.
Bandwidth The frequency at which the output is attenuated by -3 dBs .
On Response The Frequency response of the "ON" switch.
On Loss
The voltage drop across the "ON" switch seen on the On Response vs. Frequency plot as how many dBs the signal is away from 0 dB .
$V_{\text {INL }} \quad M$ aximum input voltage for logic " 0 ". $V_{\text {INH }} \quad$ Minimum input voltage for logic " 1 ". $I_{\text {INL }}\left(I_{\text {INH }}\right) \quad$ Input current of the digital input. $I_{D D} \quad$ Positive supply current.

Delay between applying the digital control input and the output switching off.

ABSOLUTE MAXIMUM RATINGS ${ }^{\mathbf{1}}$

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)
$\begin{array}{lr}V_{D D} \text { to GND } & -0.3 \mathrm{~V} \text { to }+7 \mathrm{~V} \\ \text { Analog, } \mathrm{D} \text { igital } \text { Inputs }^{2} & -0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V} \text { or }\end{array}$
Analog, Digital Inputs ${ }^{2} \quad 30 \mathrm{~mA}, \begin{aligned} & -0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V} \text { or or } \\ & \end{aligned}$
Peak Current, S or D 100 mA
(Pulsed at $1 \mathrm{~ms}, 10 \%$ Duty Cycle max)
C ontinuous Current, each S 30 mA
Continuous Current D, ADG729 80mA
Continuous Current D, ADG728 120mA
Operating Temperature Range

Industrial (B Version)
Storage Temperature Range
Junction Temperature
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$+150^{\circ} \mathrm{C}$

TSSOP Package, Power Dissipation	
$\theta_{\text {JA }}$ Thermal Impedance	$4^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {Jc }}$ T hermal Impedance	$27.6{ }^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering	
Vapor Phase (60 sec)	$+215^{\circ} \mathrm{C}$
Infrared (15 sec)	$+220^{\circ} \mathrm{C}$
ESD	2 kV
NOTES	
${ }^{1}$ Stresses abovethoselisted under "A bsoluteM aximum Ratings" may causepermanent damageto thedevice. Thisisastress rating only and functional operation of thedevice at these or any other conditions above thoselisted in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect devicereliability. Only oneabsolutemaximum ratingmay be applied at any onetime.	
${ }^{2}$ O vervoltagesat IN, S or D will beclamped by internal d	should belimited

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD G 738/AD G 739 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Preliminary Technical Data

GENERAL DESCRIPTION

The ADG 738 and ADG 739 are serially controlled, 8 channel and dual 4 channel matrix switches respectively. While providing the normal multiplexing and demultiplexing functions, these parts also provide the user with some more flexibility as to where their signal may be routed. Each bit of the 8 bit serial word corresponds to one switch of the part. A logic ' 1 ' in the particular bit position turns on the switch, while a logic ' 0 ' turns the switch off. Because each switch is independently controlled by an individual bit, this provides the option of having any, all or none of the switches ON . This feature may be particularly useful in the demultiplexing application where the user may wish to direct one signal from the drain to a number of outputs (sources). Care must be taken, however, in the multiplexing situation where a number of inputs may be shorted together, (only separated by the small on resistance of the switch).

POWER ON RESET

On power up of the device, all switches will be in the OFF condition and the internal shift register is filled with zeros and will remain so until a valid write takes place.

SERIAL INTERFACE

The ADG738 and ADG739 have a three wire serial interface ($\overline{\text { SYNC }}, ~ S C L K$, and DIN), which is compatible with SPI, QSPI, MICROWIRE interface standards and most DSP's. Figure 1 shows the timing diagram of a typical write sequence.

Data is written to the 8 -bit shift register via DIN under the control of the $\overline{\text { SYNC }}$ and SCLK signals. Data may be written to the shift register in more or less than 8 bits. In each case the shift register retains the last eight bits that were written.
When $\overline{\text { SYNC }}$ goes low, the input shift register is enabled. Data from DIN is clocked into the shift register on the falling edge of SCLK. Each bit of the eight bit word corresponds to one of the eight switches. Figure 2 shows the contents of the input shift register. Data appears on the DOUT pin on the rising edge of SCLK suitable for daisy chaining, delayed of course by eight bits. When all eight bits have been written into the shift register, the SYNC line is brought high again. The switches are updated with the new configuration and the input shift register is disabled. With SYNC held high, any further data or noise on the DIN line will have no effect on the shift register.

Figure 2. Input Shift Register Contents

TEST CIRCUITS TBD

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).
16-Lead TSSOP
(RU-16)

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

