Preliminary Technical Data

FEATURES

ADG714 SPI/ QSPI/ Microwire Compatible Interface
ADG715 $I^{2} \mathrm{C}$ Compatible Interface
+2.7 V to +5.5 V Single Supply
+/-3 V Dual Supply
Low On Resistance (2.5 Ω typ)
Low On Resistance Flatness
Low Leakage
Octal SPST
Power on Reset
Fast Switching Times
TTL/CMOS compatible

APPLICATIONS

Data Acquisition Systems
Communication Systems
Relay replacement
Audio and Video Switching

FUNCTIONAL BLOCK DIAGRAMS

GENERAL DESCRIPTION

The ADG714/ADG715 are CMOS, octal SPST (single pole, single throw) switches controlled via either a two or three wire serial interface. On resistance is closely matched between switches and very flat over the full signal range. Each switch conducts equally well in both directions and the input signal range extends to the supplies. Data is written to these devices in the form of 8 bits, each bit corresponding to one channel.
The ADG714 utilizes a three wire serial interface that is compatible with SPI ${ }^{\top M}$, QSPI $^{\top M}$ and MICROWIRE ${ }^{\top M}$ and DSP interface standards. The output of the shift register DOUT enables a number of these parts to be daisy chained.
The ADG715 utilizes a two wire serial interface that is compatible with the $I^{2} C^{\top M}$ interface standard. The ADG715 has four hard wired addresses, selectable from two external address pins (A0 and A1). This allows the 2 LSB's of the 7-bit slave address to be set by the user. A maximum of four of these devices maybe connected to the bus.
$I^{2} \mathrm{C}$ is a trademark of Philips Corporation.
SPI and QSPI are trademarks of M otorola, Inc.
MICROWIRE is a trademark of N ational Semiconductor Corporation.

REV. PrC August ‘99

[^0]On power up of these devices, all switches are in the OFF condition, and the internal registers contain all zeros.
Low power consumption and operating supply range of +2.7 V to +5.5 V make this part ideal for many applications. These parts may also be supplied from a dual +/-3V supply. The ADG 714 and ADG 715 are available in a small 24 -Lead TSSOP package.

PRODUCT HIGHLIGHTS

1. Three Wire Serial Interface.
2. Single/Dual Supply Operation. The ADG714 is fully specified and guaranteed with +3 V , +5 V and $+/-3 \mathrm{~V}$ supply rails.
3. Low On Resistance, typically 2.5Ω.
4. Low Leakage.
5. Power on Reset.
6. Small 24-Lead TSSOP package.

Parameter	B Version		Units	Test Conditions/Comments
	+25 ${ }^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \\ & \text { to }+85^{\circ} \mathrm{C} \end{aligned}$		
ANALOG SWITCH Analog Signal Range On-Resistance (Ron) On-Resistance Match Between Channels ($\Delta \mathrm{R}_{\mathrm{ON}}$) On-Resistance Flatness ($\mathrm{R}_{\text {FLat(On) }}$)	$\begin{aligned} & 2.5 \\ & 4 \\ & 0.75 \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \text { to } \mathrm{V}_{D D} \\ & 4.5 \\ & 0.1 \\ & 0.4 \\ & 1.2 \end{aligned}$	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=10 \mathrm{~mA}$; Test Circuit 1; $\begin{aligned} & V_{S}=0 V \text { to } V_{D D}, I \mathrm{Is}=10 \mathrm{~mA} ; \\ & V_{S}=0 \mathrm{~V} \text { to } V_{D D}, I_{S}=10 \mathrm{~mA} ; \end{aligned}$
LEAKAGE CURRENTS Source OFF Leakage IS (OFF) Drain OFF Leakage I_{D} (OFF) Channel ON Leakage $I_{D}(O N)$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.1 \\ & \pm 0.01 \\ & \pm 0.1 \\ & \pm 0.01 \\ & \pm 0.1 \end{aligned}$	$\begin{aligned} & \pm 0.3 \\ & \pm 0.3 \\ & \pm 0.3 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{D}}=4.5 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 4.5 \mathrm{~V} \text {; } \\ & \mathrm{T}^{\text {est }} \mathrm{Circuit} 2 ; \\ & \mathrm{V}_{\mathrm{D}}=4.5 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}=1 \mathrm{~V} / 4.5 \mathrm{~V} \text {; } \\ & \mathrm{T}^{\text {est Circuit } 3 ;} \\ & \mathrm{V}_{\mathrm{D}}=\mathrm{V}_{\mathrm{S}}=1 \mathrm{~V} \text {, or } 4.5 \mathrm{~V} \text {; } \\ & \text { T est Circuit 4; } \end{aligned}$
DIGITAL INPUTS(SCLK,DIN, $\overline{\text { SYNC, }}$ AO, Input High Voltage, VINH Input Low Voltage, $\mathrm{V}_{\text {INL }}$ Input Current, $\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$ $\mathrm{C}_{\text {IN }}$, Digital Input Capacitance ${ }^{2}$	A1) 0.005 3	$\begin{aligned} & 2.4 \\ & 0.8 \\ & \pm 0.1 \end{aligned}$	V min \checkmark max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$V_{I N}=V_{\text {INL }} \text { or } V_{\text {INH }}$
DIGITAL OUTPUT ADG714 Dout ${ }^{2}$ DOUT Output High Voltage DOUT Output Low Voltage		$\begin{aligned} & V_{D D} \\ & 0.4 \end{aligned}$	\max max	
DIGITAL INPUTS (SCL, SDA) ${ }^{2}$ Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, $\mathrm{V}_{\mathrm{INL}}$ $I_{\text {IN }}$, Input Leakage Current $\mathrm{V}_{\text {HYST }}$, Input Hysteresis $\mathrm{C}_{\text {IN }}$, Input Capacitance	$\begin{aligned} & T B D \\ & 0.05 V_{D D} \\ & 3 \end{aligned}$	$\begin{aligned} & 0.7 V_{D D} \\ & V_{D D}+0.3 \\ & -0.3 \\ & 0.3 V_{D D} \\ & \pm 1 \end{aligned}$	V min $V \max$ V min \checkmark max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$V_{I N}=0 V \text { to } V_{D D} .$
LOGIC OUTPUT (SDA) ${ }^{2}$ Vol, Output Low Voltage		$\begin{aligned} & 0.4 \\ & 0.6 \end{aligned}$	V max V max	$\begin{aligned} & I_{\mathrm{SINK}}=3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{SINK}}=6 \mathrm{~mA} \end{aligned}$
DYNAMIC CHARACTERISTICS² ton $\mathrm{t}_{\text {OFF }}$ Break-Before-M ake Time Delay, t_{D} Charge Injection Off Isolation Channel to Channel Crosstalk -3 dB Bandwidth C_{s} (OFF) C_{D} (OFF) $C_{D}, C_{S}(O N)$	30 21 15 5 -60 -60 200 9 TBD TBD	$\begin{aligned} & \text { TBD } \\ & \text { TBD } \\ & 1 \end{aligned}$	ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ M Hz typ pF typ pF typ pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{~T} \text { est Circuit 5; } \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}, \mathrm{~T} \text { est Circuit } 5 ; \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3.5 \mathrm{~V}, \mathrm{~T} \text { est Circuit } 6 \\ & \mathrm{~V}_{\mathrm{S}}=2 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} ; \text { T est Circuit } 8 ; \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz} ; \mathrm{T} \text { est Circuit } 9 ; \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz} \mathrm{~Hz} \text { est Circuit } 10 ; \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{~T} \text { est Circuit 11; } \end{aligned}$
POWER REQUIREMENTS ID	10	TBD	$\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 5.5 \mathrm{~V} \end{aligned}$

NOTES

${ }^{1}$ T emperature range is as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
${ }^{2} G$ uaranteed by design, not subject to production test.
Specifications subject to change without notice.

NOTES

${ }^{1} \mathrm{~T}$ emperature ranges are as follows: B Versions: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
${ }^{2} \mathrm{G}$ uaranteed by design, not subject to production test.
Specifications subject to change without notice.

Dual Supply ${ }^{1}\left(V_{D D}=+3 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{S S}=-3 \mathrm{~V} \pm 10 \%\right.$, GND $=0 \mathrm{~V}$.)

Parameter	B Version		Units	Test Conditions/Comments
	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \\ & \text { to }+85^{\circ} \mathrm{C} \end{aligned}$		
ANALOG SWITCH Analog Signal Range On-Resistance ($\mathrm{Ron}_{\mathrm{on}}$) On-Resistance Match Between Channels ($\Delta \mathrm{R}_{\mathrm{on}}$) On-Resistance Flatness ($\mathrm{R}_{\text {flat (On) }}$)	5 0.75	$V_{S S} \text { to } V_{D D}$ TBD TBD	Ω typ Ω max Ω typ Ω typ Ω max	$V_{S}=V_{S S} \text { to } V_{D D}, I_{D S}=10 \mathrm{~mA} ;$ Test Circuit 1; $\begin{aligned} & V_{S}=V_{S S} \text { to } V_{D D}, I_{D S}=10 \mathrm{~mA} ; \\ & V_{S}=V_{S S} \text { to } V_{D D}, I_{D S}=10 \mathrm{~mA} ; \end{aligned}$
LEAKAGE CURRENTS Source OFF Leakage I_{S} (OFF) Drain OFF Leakage I_{D} (OFF) Channel ON Leakage $I_{D}, I_{S}(O N)$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.1 \\ & \pm 0.01 \\ & \pm 0.1 \\ & \pm 0.01 \\ & \pm 0.1 \end{aligned}$	$\begin{aligned} & \pm 0.3 \\ & \pm 0.3 \\ & \pm 0.3 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+2.75 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-2.75 \mathrm{~V} \\ & \text { T BD } \\ & \text { T est Circuit 2; } \\ & \text { T BD } \\ & \text { T est Circuit 3; } \\ & \text { T B D } \\ & \text { T est Circuit 4; } \end{aligned}$
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, VinL Input Current IINL orlinh $\mathrm{C}_{\mathrm{IN}^{\prime}}$, Digital Input Capacitance	$\begin{aligned} & 0.005 \\ & 2 \end{aligned}$	$\begin{aligned} & \text { T B D } \\ & 0.4 \\ & \pm 0.1 \end{aligned}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max pF typ	$V_{\text {IN }}=V_{\text {INL }}$ or $V_{\text {INH }}$
DIGITAL OUTPUT ADG714 Dout DOUT Output High Voltage DOUT Output Low Voltage		$\begin{aligned} & V_{D D} \\ & 0.4 \end{aligned}$	$\max _{\max }$	
DIGITAL INPUTS (SCL, SDA) ${ }^{2}$ Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, $\mathrm{V}_{\text {INL }}$ $I_{\text {IN }}$, Input Leakage Current $\mathrm{V}_{\text {HYst }}$, Input Hysteresis $\mathrm{C}_{\text {IN }}$, Input Capacitance	TBD $0.05 \mathrm{~V}_{\mathrm{D}}$ 3	$\begin{aligned} & 0.7 \mathrm{~V}_{D D} \\ & \mathrm{~V}_{D D}+0.3 \\ & -0.3 \\ & 0.3 \mathrm{~V}_{D D} \\ & \pm 1 \end{aligned}$	\checkmark min \checkmark max V min $\vee \max$ $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max \checkmark min pF typ	$\mathrm{V}_{I N}=0 \mathrm{~V}$ to $\mathrm{V}_{\text {DD }}$.
LOGIC OUTPUT (SDA) ${ }^{2}$ Vol, Output Low Voltage		$\begin{aligned} & 0.4 \\ & 0.6 \end{aligned}$	V max V max	$\begin{aligned} & I_{\text {SINK }}=3 \mathrm{~mA} \\ & I_{\text {SINK }}=6 \mathrm{~mA} \end{aligned}$
DYNAMIC CHARACTERISTICS ${ }^{2}$ t_{on} $\mathrm{t}_{\text {OFF }}$ Break-Before-M ake Time Delay, t_{D} C harge Injection Off Isolation Channel to Channel Crosstalk -3 dB Bandwidth C_{s} (OFF) C_{D} (OFF) $C_{D}, C_{S}(O N)$	$\begin{aligned} & 32 \\ & 23 \\ & 8 \\ & 5 \\ & -60 \\ & -60 \\ & 200 \\ & 9 \\ & \text { TBD } \\ & \text { TBD } \end{aligned}$	$\begin{aligned} & \text { TBD } \\ & \text { TBD } \\ & 1 \end{aligned}$	ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ M Hz typ pF typ pF typ pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}, \mathrm{~T} \text { est } \mathrm{C} \text { ircuit } ; \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} ; \\ & \mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V}, \text { Test Circuit } 5 ; \\ & \mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=1.5 \mathrm{~V}, \mathrm{~T} \text { est Circuit } 6 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}, \text { T est Circuit } 8 ; \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{M} \mathrm{~Hz}, \text { Test Circuit } 9 ; \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz} \text {, Test Circuit 10; } \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{~T} \text { est Circuit 11; } \end{aligned}$
POWER REQUIREMENTS $I_{D D}$ $I_{5 S}$	10 10	$\begin{aligned} & \text { TBD } \\ & \text { TBD } \end{aligned}$	$\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$ $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+3.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-3.3 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or }+3.3 \mathrm{~V} \end{aligned}$

NOTES

${ }^{1} \mathrm{~T}$ emperature range is as follows: B V ersion: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.
Specificationssubject to change without notice.

Preliminary Technical Data

ADG714TIMINGCHARACTERISTICS ${ }^{1,2}\left(v_{D 0}=+2.5 \mathrm{~V}\right.$ to +5.5 V . All specifications $-40^{\circ} \mathrm{C}$ to $+85^{\circ}$ Cunless otherwise noted)

Parameter	Limit at T $\mathbf{M I N}^{\prime}, \mathbf{T}_{\text {MAX }}$	Units	Conditions/Comments
t_{1}	33	ns min	SCLK Cycle time
t_{2}	13	ns min	SCLK High Time
t_{3}	13	ns min	SCLK Low Time
t_{4}	0	ns min	$\overline{\text { SYNC to SCLK active edge setup time }}$
t_{5}	5	ns min	Data Setup Time
t_{6}	4.5	ns min	Data Hold Time
t_{7}	0	ns min	SCLK Falling edge to $\overline{\text { SYNC Rising edge }}$
t_{8}	33	ns min	Minimum $\overline{\text { SYNC high time }}$
t_{9}	20	ns min	SCLK rising edge to DOUT valid

NOTES
${ }^{1}$ See Figure 1.
${ }^{2}$ All input signals are specified with $\operatorname{tr}=t f=5 n s\left(10 \%\right.$ to 90% of $\left.\mathrm{V}_{\mathrm{DD}}\right)$ and timed from a voltage level of $\left(\mathrm{V}_{I L}+\mathrm{V}_{I H}\right) / 2$.
Specifications subject to change without notice.

Figure 1. 3-Wire Serial Interface Timing Diagram.

ADG714/ADG715
Preliminary Technical Data
ADG715 TM M NG CHARACTERISTICS ${ }^{1}\left(V_{D D}=+2.5 \mathrm{~V}\right.$ to +5.5 V . All specifications $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{Cunless}$ otherwise noted)

Parameter	Limit at $\mathrm{T}_{\text {MIN }}, \mathrm{T}_{\text {MAX }}$	Units	Conditions/Comments
FSCL	400	kHz max	SCL Clock Frequency
t_{1}	2.5	$\mu \mathrm{s}$ min	SCL Cycle Time
t_{2}	0.6	$\mu \mathrm{s}$ min	$\mathrm{t}_{\text {HIGH }}$, SCL High Time
t_{3}	1.3	$\mu \mathrm{s}$ min	tow, SCL Low Time
t_{4}	0.6	$\mu \mathrm{s}$ min	t_{HD}, sta, Start/Repeated Start Condition Hold Time
t_{5}	100	ns min	$\mathrm{t}_{\text {SU, DAt }}$, D ata Setup Time
$\mathrm{t}_{6}{ }^{2}$	0.9	μs max	$t_{\text {HD, DAT }}$, D ata Hold Time
	0	$\mu \mathrm{s}$ min	
t_{7}	0.6	$\mu \mathrm{s}$ min	$\mathrm{t}_{\text {su, sta }}$, Setup Time for Repeated Start
t_{8}	0.6	$\mu \mathrm{S}$ min	$\mathrm{t}_{\text {su, sto }}$, Stop Condition Setup Time
t_{9}	1.3	$\mu \mathrm{s}$ min	$\mathrm{t}_{\text {BUF }}$, Bus Free Time Between a STOP Condition and a Start Condition
t_{10}	300	ns max	t_{R}, Rise Time of both SCL and SDA when receiving
	$20+0.1 C_{b}{ }^{3}$	ns min	
t_{11}	250	ns max	t_{F}, Fall Time of SDA when receiving
t_{11}	300	ns max	t_{F}, Fall Time of both SCL and SDA when transmitting
	$20+0.1 C_{b}{ }^{3}$	ns min	
C_{b}	400	pF max	Capacitive Load for Each Bus Line
tsp^{4}	50	ns max	Pulse width of spike suppressed

NOTES
${ }^{1}$ See Figure 2.
${ }^{2}$ A master device must provide a hold time of at least 300 ns for the SDA signal (referred to the $V_{I H}$ min of the SCL signal) in order to bridge the undefined region of SCL's fallingedge.
${ }^{3} C_{b}$ is the total capacitance of one bus line in pF . t_{R} and t_{F} measured between $0.3 \mathrm{~V}_{D D}$ and $0.7 \mathrm{~V}_{D D}$.
${ }^{4}$ Input filtering on both the SCL and SDA inputs suppress noise spikes which are less than 50 ns .
Specifications subject to change without notice.

Figure 2. 2-Wire Serial Interface Timing Diagram.

Preliminary Technical Data

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)
$V_{D D}$ to $V_{S S}$
$V_{D D}$ to GND
$V_{\text {Ss }}$ to GND
Analog Inputs ${ }^{2}$
Digital Inputs ${ }^{2}$
Peak Current, S or D
Continuous Current, S or D
Operating Temperature Range

Industrial (B Version)
Storage Temperature Range
Junction Temperature

100 mA

30 mA

Package, Power Dissipation	mW
$\theta_{\text {JA }}$ Thermal Impedance	$128^{\circ} \mathrm{C} / \mathrm{W}$
θ_{JC} Thermal Impedance	$42^{\circ} \mathrm{C} / \mathrm{W}$
Lead T emperature, Soldering	
Vapor Phase $(60 \mathrm{sec})$	$+215^{\circ} \mathrm{C}$
Infrared $(15 \mathrm{sec})$	$+220^{\circ} \mathrm{C}$
E SD	2 kV

$+7 \mathrm{~V}$
-0.3 V to +7 V
+0.3 V to -7 V
$\mathrm{V}_{\mathrm{SS}}-0.3 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{Vor}$
30 mA , Whichever Occurs First
-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or
30 mA , Whichever Occurs First
$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$+150^{\circ} \mathrm{C}$

NOTES
${ }^{1}$ Stresses abovethoselisted under "A bsoluteM aximum Ratings" may causepermanent damageto thedevice. Thisisastress rating only and functional operation of thedevice at these or any other conditions abovethoselisted in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periodsmay affect devicereliability. Only oneabsolutemaximum ratingmay be applied at any one time.
${ }^{2}$ O vervoltagesatIN, SorD will beclamped by internal diodes. C urrent should belimited to the maximum ratings given.

ORDERING GUIDE

Model	Temperature Range	Interface	Package Description	Package Option
AD G 714BRU	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	SPI/QSPI/M icrowire	T SSOP	RU -24
AD G 715BRU	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$\mathrm{I}^{2} \mathrm{C}$ C ompatible	TSSOP	$\mathrm{RU}-24$

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD G 714/AD G 715 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATION 24 lead TSSOP

ADG 714 PIN FUNCTION DESCRIPTION

Pin No.	Mnemonic	Description
1	SCLK	Serial Clock Input. Data is clocked into the input shift register on the falling edge of the serial clock input. These devices can accomodate serial input rates of up to 30 MHz .
2	$V_{\text {DD }}$	Positive Analog supply voltage.
3	D IN	Serial Data Input. Data is clocked into the 8-bit input register on the falling edge of the serial clock input.
4	G N D	Ground reference
$\begin{aligned} & 5,7,9,11 \\ & 14,16,18,20 \end{aligned}$	SX	Source. M ay be an input or output
$\begin{aligned} & 6,8,10,12,13 \\ & 15,17,19 \end{aligned}$	D X	Drain. M ay be an input or output.
21	$\mathrm{V}_{\text {SS }}$	Negative analog supply voltage, for single supply operation this should be tied to GND.
22	D OUT	Serial Data Output. This allows a number a parts to be daisy chained. Data is clocked out of the input shift register on the rising edge of SCLK.
23	$\overline{\mathrm{R}} \overline{\mathrm{E}} \overline{\mathrm{S}} \overline{\mathrm{E}} \overline{\mathrm{T}}$	Active low control input that clears the input register and turns all switches to the OFF condition.
24	$\overline{\mathrm{S}} \overline{\mathrm{Y}} \overline{\mathrm{N}} \overline{\mathrm{C}}$	Active Low Control Input. This is the frame synchronization signal for the input data. When $\overline{\text { SYNC }}$ goes low, it powers on the SCLK and DIN buffers and the input shift register is enabled. Data is transferred on the falling edges of the following 8 clocks. Taking SYNC high, updates the switches.

ADG715 PIN FUNCTION DESCRIPTION

Pin No.	Mnemonic	Description
1	SCL	Serial Clock Line. This is used in conjunction with the SDA line to clock data into the 16 -bit input shift register. Clock rates of up to $400 \mathrm{kbit} / \mathrm{s}$ can be accommodated with this 2 -wire serial interface.
2	$V_{\text {DD }}$	Positive Analog supply voltage.
3	SDA	Serial Data Line. This is used in conjunction with the SCL line to clock data into the 8 -bit input shift register during the write cycle and used to read back 1 byte of data during the read cyle. It is a bidirectional open-drain data line which should be pulled to the supply with an external pull-up resistor.
4	G N D	Ground reference
$\begin{aligned} & 5,7,9,11 \\ & 14.16 .18 .20 \end{aligned}$	SX	Source. M ay be an input or output
$\begin{aligned} & 6,8,10,12,13 \\ & 15,17,19 \end{aligned}$	D X	Drain. M ay be an input or output.
21	V_{SS}	Negative analog supply voltage, for single supply operation this should be tied to GND .
22	A 1	Address Input. Sets the 2nd Least Significant bit of the 7 bit slave address.
23	$\overline{\mathrm{R}} \overline{\mathrm{E}} \overline{\mathrm{S}} \overline{\mathrm{E}} \overline{\mathrm{T}}$	Active low control input that clears the input register and turns all switches to the OFF condition.
24	A 0	Address Input. Sets the Least Significant bit of the 7 bit slave address.

Preliminary Technical Data

TERMINOLOGY

$\mathrm{R}_{\text {ON }}$	Ohmic resistance between D and S .
$\mathrm{R}_{\text {FLAT (ON) }}$	Flatness is defined as the difference between the maximum and minimum value of onresistance as measured over the specified analog signal range.
I_{S} (OFF)	Source leakage current with the switch "OFF."
ID (OFF)	Drain leakage current with the switch "OFF."
$I_{\text {D }}, I_{S}(O N)$	Channel leakage current with the switch "ON."
V_{D}	Analog voltage on terminals D, S.
C_{S} (OFF)	"OFF" switch source capacitance. M easured with reference to ground.
$C_{D}(O F F)$	"OFF" switch drain capacitance. M easured with reference to ground.
$C_{D}, C_{S}(0 N)$	"ON" switch capacitance. M easured with reference to ground.
$\mathrm{C}_{\text {IN }}$	Digital input capacitance.
t_{N}	Delay between applying the digital control input and the output switching on. See test circuit 4.

$\mathrm{t}_{\mathrm{OFF}}$

Off Isolation A measure of unwanted signal coupling through an "OFF" switch.
Crosstalk A measure of unwanted signal which is coupled through from one channel to another as a result of parasitic capacitance.
Charge A measure of the glitch impulse transferred
Injection from the digital input to the analog output during switching.
Bandwidth The frequency at which the output is attenuated by -3 dBs .
On Response The Frequency response of the "ON" switch.

On Loss The voltage drop across the "ON" switch seen on the On Response vs. Frequency plot as how many dBs the signal is away from 0 dB .
M aximum input voltage for logic " 0 ". M inimum input voltage for logic " 1 ". Input current of the digital input. Positive supply current.

Preliminary Technical Data

GENERAL DESCRIPTION

The ADG714 and ADG715 are serially controlled, octal SPST switches, controlled by either a 2 or 3 wire interface. Each bit of the 8 bit serial word corresponds to one switch of the part. A logic ' 1 ' in the particular bit position turns on the switch, while a logic ' 0 ' turns the switch off. Because each switch is independently controlled by an individual bit, this provides the option of having any, all or none of the switches ON.

POWER ON RESET

On power up of the device, all switches will be in the OFF condition and the internal shift register is filled with zeros and will remain so until a valid write takes place.

SERIAL INTERFACE

3-WIRE SERIAL INTERFACE

The ADG714 has a three wire serial interface ($\overline{\mathrm{SYNC}}$, SCLK, and DIN), which is compatible with SPI, QSPI, MICROWIRE interface standards and most DSP's. Figure 1 shows the timing diagram of a typical write sequence.
Data is written to the 8-bit shift register via DIN under the control of the $\overline{\text { SYNC }}$ and SCLK signals. Data may be written to the shift register in more or less than 8 bits. In each case the shift register retains the last eight bits that were written.

When $\overline{\text { SYNC }}$ goes low, the input shift register is enabled. Data from DIN is clocked into the shift register on the falling edge of SCLK. Each bit of the eight bit word corresponds to one of the eight switches. Figure 2 shows the contents of the input shift register. Data appears on the DOUT pin on the rising edge of SCLK suitable for daisy chaining, delayed of course by eight bits. When all eight bits have been written into the shift register, the SYNC line is brought high again. The switches are updated with the new configuration and the input shift register is disabled. With SYNC held high, any further data or noise on the DIN line will have no effect on the shift register.

Figure 3. Input Shift Register Contents

SERIAL INTERFACE

2-WIRE SERIAL BUS

The ADG715 is controlled via an $I^{2} \mathrm{C}$ compatible serial bus. This device is connected to the bus as a slave device (no clock is generated by the switch)
The ADG 715 has a 7-bit slave addresses. The five MSBs are 10010 and the two LSBs are determined by the state of the A0 and A1 pins.
The 2-wire serial bus protocol operates as follows:

1. The master initiates data transfer by establishing a START condition which is when a high to low transition on the SDA line occurs while SCL is high. The following byte is the address byte which consists of the 7-bit slave address followed by a R/W bit (this bit determines whether data will be read from or written to the slave device).
The slave whose address corresponds to the transmitted address responds by pulling the SDA line low during the ninth clock pulse (this is termed the Acknowledge bit). At this stage, all other devices on the bus remain idle while the selected device waits for data to be written to or read from its serial register. If the R/W bit is high, the master will read from the slave device. However, if the R/W bit is low, the master will write to the slave device.
2. Data is transmitted over the serial bus in sequences of nine clock pulses (eight data bits followed by an Acknowledge bit). The transitions on the SDA line must occur during the low period of SCL and remain stable during the high period of SCL.
3) When all data bits have been read or written, a STOP condition is established by the master. A STOP condition is defined as a low to high transition on the SDA line while SCL is high. In Write mode, the master will pull the SDA line high during the 10th clock pulse to establish a STOP condition. In Read mode, the master will issue a No Acknowledge for the 9th clock pulse (i.e. the SDA line remains high). The master will then bring the SDA line low before the 10th clock pulse and then high during the 10th clock pulse to establish a STOP condition.

See Figure 4 for a graphical explanation of the serial interface.

A repeated write function gives the user flexibility to update the matrix switch a number of times after addressing the part only once. During the write cycle, each data byte will update the configuration of the switches. For example, after the matrix switch has acknowledged its address byte, and receives one data byte, the switches will update after the data byte, if another data byte is written to the matrix switch while it is still the addressed slave device, this data byte will also cause an switch configuration update. Repeat read of the matrix switch is also allowed.

INPUT SHIFT REGISTER

The input shift register is 8 -bits wide. Figure 3 illustrates the contents of the input shift register. Data is loaded into the device as an 8 -bit word under the control of a serial clock input, SCL. The timing diagram for this operation is shown in Figure 1. The 8 -bit word consists of 8 data bits each controlling one switch. M SB (Bit 7) is loaded first.

Preliminary Technical Data

WRITE OPERATION

When writing to the ADG715, the user must begin with an address byte and R/W bit, after which the switch will Acknowledge that it is prepared to receive data by pulling SDA low. This address byte is followed by the 8 -bit word. The write operations for the matrix switch is shown in the figure below.

Figure 4. ADG715 Write Sequence

READ OPERATION

When reading data back from the ADG715, the user must begin with an address byte and $R / \overline{\mathrm{W}}$ bit, after which the matrix switch will Acknowledge that it is prepared to transmit data by pulling SDA low. The readback operation is a single byte which consists of the 8 data bits in the input register. The read operation for the part is shown in the figure below.

Figure 5. ADG715 Readback Sequence

TEST CIRCUITS
 TBD

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

24 Lead TSSOP
(RU-24)

[^0]: Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

