PLLFrequency Synthesizer

Preliminary Technical Data

FEATURES
ADF4116: 550 MHz
ADF4117: $\quad 1.2 \mathrm{GHz}$
ADF4118: $\quad 2.8$ GHz
+2.7 V to +5.5 V Power Supply
Separate V_{p} Allows Extended Tuning Voltage in 3V Systems
Selectable Charge Pump Currents
Dual Modulus Prescaler

ADF4116:	$8 / 9$
ADF4117/ADF4118:	$32 / 33$

3-Wire Serial Interface
Digital Lock Detect
Power Down Mode
Fastlock Mode

APPLICATIONS

Base Stations for Wireless Radio (GSM, PCS, DCS, WCDMA)
Wireless Handsets (GSM, PCS, DCS, WCDMA)
Wireless LANS
Communications Test Equipment CATV Equipment

GENERAL DESCRIPTION

The ADF4116 family of frequency synthesizers can be used to implement local oscillators in the up-conversion and down-conversion sections of wireless receivers and transmitters. They consist of a lownoise digital PFD (Phase Frequency Detector), a precision charge pump, a programmable reference divider, programmable A and B counters and a dualmodulus prescaler ($\mathrm{P} / \mathrm{P}+1$). The $\mathrm{A}(5-\mathrm{bit})$ and B (13-bit) counters, in conjunction with the dual modulus prescaler ($\mathrm{P} / \mathrm{P}+1$), implement an N divider ($\mathrm{N}=$ $B P+A$). In addition, the 14 -bit reference counter (R Counter), allows selectable REFIN frequencies at the PFD input. A complete PLL (Phase-Locked Loop) can be implemented if the synthesizer is used with an external loop filter and VCO (Voltage Controlled O scillator)
Control of all the on-chip registers is via a simple 3wire interface. The devices operate with a power supply ranging from 2.7 V to 5.5 V and can be powered down when not in use.

FUNCTIONAL BLOCK DIAGRAM

ADF4116/7/8- SPECIFICATIONS ${ }^{1}$

$\left(A V_{D D}=A V_{D D}=+3 V \pm 10 \%,+5 \mathrm{~V} \pm 10 \% V_{P}=A V_{D D},+5\right.$ $\mathrm{V} \pm 10 \%$, AGND $=\mathrm{DGND}=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ unless otherwise noted)

Parameter	B Version	$\begin{aligned} & \text { BChips }^{2} \\ & \text { (Typical) } \\ & \hline \end{aligned}$	Units	TestConditions/Comments
RF CHARACTERISTICS RF Input Frequency ADF4116 ADF4117 ADF4118 Reference Input Frequency M aximum Allowable Prescaler Output Frequency ${ }^{3}$ Phase Detector Frequency ${ }^{4}$ RF Input Sensitivity Reference Input Sensitivity	$\begin{aligned} & 25 / 550 \\ & 0.1 / 1.2 \\ & 0.1 / 2.8 \\ & 0 / 150 \\ & 200 \\ & 55 \\ & -15 / 0 \\ & -10 / 0 \\ & -5 \end{aligned}$	$\begin{aligned} & 25 / 550 \\ & 0.1 / 1.2 \\ & 0.1 / 2.8 \\ & 0 / 150 \\ & \\ & 200 \\ & 55 \\ & -15 / 0 \\ & -10 / 0 \\ & -5 \end{aligned}$	M Hz min/max GHz min/max GHz min/max M Hz min/max M Hz max MHz max dBm min/max dBm min/max dBm min	See Figure 3 for input circuit. $\begin{aligned} & A V_{D D}=3 V \\ & A V_{D D}=5 \mathrm{~V} \end{aligned}$ ac coupled. M ax when dc coupled: 0 to $\mathrm{V}_{D D}$ (CMOS Compatible)
CHARGE PUMP ICP sink/source High Value Low Value Absolute Accuracy ICP Three State Current Sink and Source Current Matching $I_{\text {CP }}$ vs. $V_{\text {CP }}$ $I_{\text {CP }}$ vs. Temperature	$\begin{aligned} & 1 \\ & 250 \\ & 2 \\ & 5 \\ & 1 \\ & 2 \\ & 2 \\ & 2 \end{aligned}$	$\begin{aligned} & 1 \\ & 250 \\ & 2 \\ & 5 \\ & 1 \\ & 2 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$	mA typ $\mu \mathrm{A}$ typ \%typ \% max nA max \% typ \% typ \% typ	See Figure 28 $\begin{aligned} & 0.5 \mathrm{~V}<V_{C P}<V_{p}-0.5 \\ & 0.5 V<V_{C p}<V_{p}-0.5 \\ & V_{C P}=V_{p} / 2 \end{aligned}$
LOGIC INPUTS $\mathrm{V}_{\text {INH }}$, Input High Voltage $V_{\text {INL }}$, Input Low Voltage $I_{\text {INH }} / I_{\text {INL }}$, Input Current $\mathrm{C}_{\text {IN }}$, Input Capacitance Reference Input Current	$\begin{aligned} & 0.8 * D V_{D D} \\ & 0.2 * D V_{D D} \\ & \pm 1 \\ & 10 \\ & \pm 100 \end{aligned}$	$\begin{aligned} & 0.8 * D V_{D D} \\ & 0.2 * D V_{D D} \\ & \pm 1 \\ & 10 \\ & \pm 100 \end{aligned}$	V min V max $\mu \mathrm{A}$ max pF max $\mu \mathrm{A} \max$	
LOGIC OUTPUTS $V_{\text {OH, }}$, Output High Voltage VoL, Output Low Voltage	$\begin{aligned} & D V_{D D}-0.4 \\ & 0.4 \end{aligned}$	$\begin{aligned} & D V_{D D}-0.4 \\ & 0.4 \end{aligned}$	$\begin{array}{\|l\|l} \mid & V \min _{n} \\ V & \text { max } \end{array}$	$\begin{aligned} & I_{\text {OH }}=1 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=1 \mathrm{~mA} \\ & \hline \end{aligned}$
```POWER SUPPLIES \(A V_{D}\) \(D V_{D D}\) \(V_{p}\) \(I_{D D}{ }^{5}\left(\mathrm{Al}_{D D}+\mathrm{DI}_{D D}\right)\) ADF 4116 ADF4117 ADF4118 Low Power Sleep Mode```	2.7/5.5   $A V_{D D}$   $A V_{D D} / 6.0$   2.0   4.2   6.5   1	$\begin{aligned} & 2.7 / 5.5 \\ & A V_{D D} \\ & A V_{D D} / 6.0 \\ & 2.0 \\ & 4.2 \\ & 6.5 \\ & 1 \end{aligned}$	$V \min / V \max$   $V \min / V \max$   mA max mA max mA max $\mu \mathrm{A}$ typ	See Figure 26 and 27

## NOTES

1. Operating temperature range is as follows: B Version: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
2. The BChip specifications aregiven as typical values.
3. This is the maximum operating frequency of the CM OS counters. The prescaler value should be chosen to ensure that the RF input is divided down to a frequency which is less than this value.
4. Guaranteed by deign. Sample tested to ensure compliance.
5. $A V_{D D}=A V_{D D}=3 V ; R F_{I N}$ for $A D F 4116=540 \mathrm{M} \mathrm{Hz}^{2} R F_{I N}$ for $A D F 4117, A D F 4118=900 \mathrm{M} \mathrm{Hz}$.

## ADF4116/7/8- SPECIFICATIONS ${ }^{1}$

$\left(A V_{D D}=A V_{D D}=+3 V \pm 10 \%,+5 \mathrm{~V} \pm 10 \% V_{P}=A V_{D D}\right.$, $+5 \mathrm{~V} \pm 10 \%, ; A G N D=D G N D=0 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ unless otherwise noted)

Parameter	B Version	BChips	Units	Test Conditions/Comments
NOISE CHARACTERISTICS ADF4118 Phase Noise Floor ${ }^{2}$	$\begin{aligned} & -170 \\ & -162 \end{aligned}$	$\begin{aligned} & -170 \\ & -162 \end{aligned}$	dBc/Hz typ   $\mathrm{dBc} / \mathrm{Hz}$ typ	@ 25 kHz PFD Frequency   @ 200kHz PFD Frequency
Phase N oise Performance ${ }^{3}$				@ VCO Output
ADF $4116^{4}$	-93	-93	dBc/Hz typ	
ADF $4117^{5}$	-89	-89	$\mathrm{dBc} / \mathrm{Hz}$ typ	
ADF $4118{ }^{5}$	-90	-90	$\mathrm{dBc} / \mathrm{Hz}$ typ	
ADF4117 ${ }^{6}$	-82	-82	$\mathrm{dBc} / \mathrm{Hz}$ typ	
ADF $4118{ }^{7}$	-83	-83	$\mathrm{dBc} / \mathrm{Hz}$ typ	
ADF $4118{ }^{8}$	-68	-68	$\mathrm{dBc} / \mathrm{Hz}$ typ	
ADF4118 ${ }^{9}$	-83	-83	$\mathrm{dBc} / \mathrm{Hz}$ typ	
Spurious Signals				$M$ easured at offset of $\mathrm{f}_{\text {PFD }} / 2 \mathrm{f}_{\text {PFD }}$
$\text { AD F } 4116^{4}$	-80/-84	-80/-84	dB typ	
ADF $4117^{5}$	-80/-84	-80/-84	dB typ	
ADF4118 ${ }^{5}$	-80/-84	-80/-84	dB typ	
ADF $4117^{6}$	-80/-84	-80/-84	dB typ	
ADF4118 ${ }^{7}$	-80/-84	-80/-84	dB typ	
ADF $4118{ }^{8}$	-78/-82	-78/-82	dB typ	
ADF4118 ${ }^{9}$	-78/-82	-78/-82	dB typ	

## NOTES

1. Operating temperature range is as follows: B V ersion: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
2. The synthesizer phase noise floor is estimated by measuring the in-band phase noise at the output of the VCO and subtracting 20logN (where $N$ is the divider value).
3. The phase noise is measured with the EVAL-ADF411XEB Evaluation Board and the H P8562E Spectrum Analyzer. The spectrum analyzer provides the REFIN for the synthesizer. ( $\mathrm{f}_{\text {REFOUT }}=10 \mathrm{M} \mathrm{Hz} @ 0 \mathrm{dBm}$ )
4. $f_{\text {REFIN }}=10 \mathrm{MHz} ; \mathrm{f}_{\text {PFD }}=200 \mathrm{kHz} ;$ Offset frequency $=1 \mathrm{kHz} ; \mathrm{f}_{\mathrm{RF}}=540 \mathrm{M} \mathrm{Hz;} \mathrm{~N}=2700 ; \mathrm{L} 00 \mathrm{~B} / \mathrm{W}=20 \mathrm{kHz}$
5. $\mathrm{f}_{\text {refin }}=10 \mathrm{MHz} ; \mathrm{f}_{\text {PFD }}=200 \mathrm{kHz} ;$ Offset frequency $=1 \mathrm{kHz} ; \mathrm{f}_{\mathrm{RF}}=900 \mathrm{M} \mathrm{Hz;} \mathrm{~N}=4500 ; \mathrm{L}$ oop $\mathrm{B} / \mathrm{W}=20 \mathrm{kHz}$
6. $f_{\text {REFIN }}=10 \mathrm{MHz;} f_{\text {PFD }}=30 \mathrm{kHz} ; ~ O f f s e t$ frequency $=300 \mathrm{~Hz} ; \quad \mathrm{f}_{\mathrm{RF}}=836 \mathrm{MHz} ; \mathrm{N}=27867 ; \mathrm{L}$ oop $\mathrm{B} / \mathrm{W}=3 \mathrm{kHz}$
7. $f_{\text {REFIN }}=10 \mathrm{MHz} ; \mathrm{f}_{\text {PFD }}=200 \mathrm{kHz} ;$ Offset frequency $=1 \mathrm{kHz} ; \mathrm{f}_{\mathrm{RF}}=1750 \mathrm{M} \mathrm{Hz;} \mathrm{~N}=8750$; Loop $\mathrm{B} / \mathrm{W}=20 \mathrm{kHz}$
8. $f_{\text {Refin }}=10 \mathrm{MHz;} \mathrm{f}_{\text {PFD }}=10 \mathrm{kHz} ; \quad$ Offset frequency $=200 \mathrm{~Hz} ; \quad \mathrm{f}_{\mathrm{RF}}=1750 \mathrm{M} \mathrm{Hz;} \mathrm{~N}=175000 ; \mathrm{L} 00 \mathrm{D} B / \mathrm{W}=1 \mathrm{kHz}$
9. $f_{\text {REFIN }}=10 \mathrm{MHz;} \mathrm{f}_{\text {PFD }}=200 \mathrm{kHz} ;$ Offset frequency $=1 \mathrm{kHz} ; \mathrm{f}_{\mathrm{RF}}=1960 \mathrm{M} \mathrm{Hz;} \mathrm{~N}=9800 ;$ Loop $\mathrm{B} / \mathrm{W}=20 \mathrm{kHz}$

Specifications subject to change without notice.

## ORDERING GUIDE

Model	Temperature Range	Package Option*
ADF4116BRU	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	RU-16
ADF4116BCP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CP-24
ADF4117BRU	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	RU-16
ADF4117BCP	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CP-24
ADF4118BRU	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	RU-16
ADF4118BC P	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	CP-24

[^0]| Parameter | Limit at <br> $\mathrm{T}_{\text {MIN }}$ to $\mathrm{T}_{\text {MAX }}$ <br> (B Version) | Units | TestConditions/Comments |
| :---: | :---: | :---: | :---: |
| $\mathrm{t}_{1}$ | 10 | ns min | DATA to CLOCK Set Up Time |
| $t_{2}$ | 10 | $n \mathrm{n}$ min | DATA to CLOCK Hold Time |
| $t_{3}$ | 25 | $n \mathrm{n}$ min | CLOCK High Duration |
| $\mathrm{t}_{4}$ | 25 | $n \mathrm{n}$ min | CLOCK Low Duration |
| $\mathrm{t}_{5}$ | 10 | $n \mathrm{n}$ min | CLOCK to LE Set Up Time |
| $\mathrm{t}_{6}$ | 20 | $n \mathrm{n}$ min | LE Pulse Width |

NOTE
Guaranteed by D esign but not Production T ested.


Figure 1. Timing Diagram

## ABSOLUTE MAXIMUM RATINGS롤

( $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted)

$A V_{D D}$ to GND ${ }^{3}$	-0.3V to +7 V
$A V_{D D}$ to $D V_{D D}$	-0.3 V to +0.3 V
$V_{P}$ to GND	-0.3 V to +7 V
$V_{P}$ to $A V_{D D}$	-0.3 V to +5.5 V
Digital I/O Voltage to GND	-0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Analog I/O Voltage to GND	-0.3 V to $\mathrm{V}_{\mathrm{p}}+0.3 \mathrm{~V}$
Operating Temperature R ange	
Industrial (B Version)	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

M aximum Junction T emperature .............. $+150^{\circ} \mathrm{C}$
TSSOP $\theta_{\text {JA }}$ Thermal Impedance ............. $150.4^{\circ} \mathrm{C} / \mathrm{W}$
CSP $\theta_{\mathrm{JA}}$ Thermal Impedance ................. TBD ${ }^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering
Vapor Phase ( 60 sec ) ......................... $+215^{\circ} \mathrm{C}$
Infrared (15 sec) ................................... $+220^{\circ} \mathrm{C}$

1. Stresses above those listed under "Absolute $M$ aximum Ratings" may cause permanent damageto thedevice. Thisisastressratingonly and functional operation of the device at theseor any other conditions above those listed in theoperational sections of this specification is not implied. Exposureto absolutemaximum rating conditions for extended periods may affect devicereliability.
2. This device is a high-performance RF integrated circuit with an ESD rating of < 2 kV and it isESD sensitive. Proper precautionsshould betaken for handling and assembly.
3. $A G N D=D G N D=G N D=0 V$.

## CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this device features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degrada-
 tion or loss of functionality.

## Preliminary Technical Data

## PIN DESCRIPTION

Mnemonic	Function
F Lo	Fast Lock Switch Output. This can be used to switch an external resistor to change the loop filter bandwidth. This will speed up locking of the PLL.
C P	Charge Pump Output. This is normally connected to a loop filter which drives the input to an external VCO.
CPGND	Charge Pump Ground
AGND	Analog Ground
$R F_{\text {IN }} B$	Complementary Input to the RF Prescaler. This point should be decoupled to the ground plane with a small bypass capacitor.
RF ${ }_{\text {IN }} \mathrm{A}$	Input to the RF Prescaler. This small signal input is normally ac coupled from the VCO.
$A V_{D D}$	Analog Power Supply. This may range from 2.7 V to 5.5 V . Decoupling capacitors to the analog ground plane should be placed as close as possible to this pin. $A V_{D D}$ must be the same value as $D V_{D D}$.
REF ${ }_{\text {IN }}$	Reference Input. This is a CMOS input with a nominal threshold of $A V_{D D} / 2$ and an equivalent input resistance of $100 \mathrm{k} \Omega$. See Figure 2. The oscillator input can be driven from a TTL or CMOS crystal oscillator or it can be ac coupled.
D G N D	Digital Ground.
CE	Chip Enable. A logic low on this pin powers down the device and puts the charge pump output into three-state mode. Taking the pin high will power up the device depending on the status of the powerdown bit F2.
CLK	Serial Clock Input. This serial clock is used to clock in the serial data to the registers. The data is latched into the 21-bit shift register on the CLK rising edge. This input is a high impedance CMOS input.
DATA	Serial Data Input. The serial data is loaded MSB first with the two LSBs being the control bits. This input is a high impedance CMOS input.
LE	Load Enable, CMOS Input. When LE goes high, the data stored in the shift registers is loaded into one of the four latches, the latch being selected using the control bits.
MUXOUT ${ }^{1}$	This multiplexer output allows either the Lock Detect, the scaled RF or the scaled Reference Frequency to be accessed externally.
$D V_{D D}$	Digital Power Supply. This may range from 2.7 V to 5.5 V . Decoupling capacitors to the digital ground plane should be placed as close as possible to this pin. $D V_{D D}$ must be the same value as $A V_{D D}$.
$V_{P}$	Charge Pump Power Supply. This should be greater than or equal to $\mathrm{V}_{D D}$. In systems where $\mathrm{V}_{D D}$ is 3 V , it can be set to 5 V and used to drive a VCO with a tuning range of up to 5 V

## NOTES

1. MUXOUT is also used for Test M odes on the devices. These T est modes will be detailed in TNXXX available from Analog D evices Inc.

## PIN CONFIGURATION



TOP VIEW


TRANSISTOR COUNT: 6425 (CMOS) and 303 (Bipolar).

## CIRCUIT DESCRIPTION

## REFERENCE INPUT SECTION

The Reference Input stage is shown below in Figure 2. SW1 and SW2 are normally-closed switches. SW3 is


Figure 2. Reference Input Stage
normally-open. When Powerdown is initiated, SW3 is closed and SW1 and SW2 are opened. This ensures that there is no loading of the $R E F_{I N}$ pin on powerdown.

## RF INPUT STAGE

The RF input stage is shown in Figure 3. It is followed by a 2 -stage limiting amplifier to generate the CML clock levels needed for the prescaler.


Figure 3. RF Input Stage

## PRESCALER

The dual-modulus prescaler takes the CML clock from the RF input stage and divides it down to a manageable frequency for the CMOS A and B counters. The prescaler is set to 8/9 for the ADF4116, and set to 32/33 for the ADF4117 \& ADF4118. It is based on a synchronous 4/5 core.

## A AND B COUNTERS

The A and B CMOS counters combine with the dual modulus prescaler to allow a wide ranging division ratio in the PLL feedback counter. The counters are guaranteed to work when the prescaler output is 200 M Hz or less. Typically, they will work with 250 MHz output from the prescaler.

## Pulse Swallow Function

The A and B counters, in conjunction with the dual modulus prescaler make it possible to generate output frequencies which are spaced only by the Reference Frequency divided by R . The equation for the VCO frequency is as follows:

$$
f_{V C O}=[(P \times B)+A] \times f_{\text {REFIN }} / R
$$

$f_{V c o}$ : Ouput Frequency of external voltage controlled oscillator (VCO).
P: Preset modulus of dual modulus prescaler.
B: Preset Divide Ratio of binary 13-bit counter (3 to 8191).

A: Preset Divide Ratio of binary 5-bit swallow counter (0 to 31).
$\mathrm{f}_{\text {REFIN }}$ : Ouput frequency of the external reference frequency oscillator.
R: Preset divide ratio of binary 14-bit programmable reference counter (1 to 16383)

## R COUNTER

The 14-bit R counter allows the input reference frequency to be divided down to produce the input clock to the phase frequency detector (PFD). Division ratios from 1 to 16,383 are allowed.


Figure 4. $A$ and $B$ Counters

## PHASE FREQUENCY DETECTOR (PFD) AND CHARGE PUMP

The PFD takes inputs from the $R$ counter and $N$ counter and produces an output proportional to the phase and frequency difference between them. Figure 5 is a simplified schematic. The PFD includes a fixed delay element


Figure 5. PFD Simplified Schematic
which sets the width of the anti-backlash pulse. This is typically 3ns. This pulse ensures that there is no deadzone in the PFD transfer function and gives a consistent reference spur level.

## MUXOUT AND LOCK DETECT

The output multiplexer on the ADF4116 family allows the user to access various internal points on the chip. The state of MUXOUT is controlled by M3, M2 and M1 in the Function Latch. Table 5 shows the full truth table. Figure 6 shows the MUXOUT section in block diagram form.

## Lock Detect

MUXOUT can be programmed for two types of lock detect:
Digital Lock Detect and Analog Lock Detect
Digital Lock Detect is active high. It is set high when the phase error on three consecutive Phase Detector cycles is less than $15 n$. It will stay set high until a phase error of greater than 25 ns is detected on any subsequent PD cycle. The N-channel open-drain analog lock detect should be operated with an external pull-up resistor of 10 k nominal. When lock has been detected it is high with narrow lowgoing pulses.


Figure 6. MUXOUT Circuit

## INPUT SHIFT REGISTER

The ADF4116 family digital section includes a 21-bit input shift register, a 14 -bit R counter and a 18 -bit N counter, comprising a 5-bit A counter and a 13-bit B counter. Data is clocked into the 21-bit shift register on each rising edge of CLK. The data is clocked in M SB first. Data is transferred from the shift register to one of four latches on the rising edge of LE. The destination latch is determined by the state of the two control bits (C2, C1) in the shift register. These are the two Isb's DB1, DB0 as shown in the timing diagram of Figure 1. The truth table for these bits is shown in Table 6. Table 1 shows a summary of how the latches are programmed.

Table 1. C2, C 1 Truth Table

	Bits C 1	Data Latch
0	0	R Counter
0	1	$N$ Counter (A and B)
1	0	Function Latch
1	1	Initialization L atch

Table 2. ADF4116 Family Latch Summary

## Reference Counter Latch

	Test Mode Bits				14-Bit Reference Counter														Control Bits	
DB20	DB19	DB18	DB17	DB16	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
LDP	T4	T3	T2	T1	R14	R13	R12	R11	R10	R9	R8	R7	R6	R5	R4	R3	R2	R1	C2 (0)	C1 (0)

## N Counter Latch

$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	13-Bit B Counter													5-Bit A Counter					Control Bits	
DB20	DB19	DB18	DB17	DB16	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	Dво
G1	B13	B12	B11	B10	B9	B8	B7	B6	B5	B4	B3	B2	B1	A5	A4	A3	A2	A1	C2 (0)	C1 (1)

## Function Latch

					Timer Counter Control							$\left\lvert\, \begin{aligned} & \omega \\ & \underset{\sim}{\omega} \\ & \underset{\sim}{\omega} \\ & 0 \end{aligned}\right.$		MUXOUT Control			$\begin{aligned} & 00 \\ & 000 \\ & \sum_{3}^{0} \\ & \vdots \\ & \hline \end{aligned}$		ControlBits	
DB20	DB19	DB18	DB17	DB16	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DBo
	PD2				TC4	TC3	TC2	TC1	F6	F5	F4	F3	F2	M3	M2	M1	PD1	F1	C2 (1)	C1 (0)

## Initialization Latch

	$\begin{aligned} & 0 \\ & 0 \\ & \sum_{3}^{0} \\ & \sum_{0} \\ & \end{aligned}$				Timer Counter Control							$\begin{aligned} & \omega \\ & \stackrel{\omega}{0} \\ & \underset{\sim}{\sim} \\ & \underset{\sim}{0} \end{aligned}$		MUXOUT   Control					Control Bits	
DB20	DB19	DB18	DB17	DB16	DB15	DB14	DB13	DB12	DB11	DB10	DB9	DB8	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
	PD2				TC4	TC3	TC2	TC1	F6	F5	F4	F3	F2	M3	M2	M1	PD1	F1	C2 (1)	C1 (1)

## Preliminary Technical Data

## REFERENCE COUNTER LATCH

Table 3. Reference Counter Latch Map


N COUNTER LATCH

Table 4. N Counter Latch Map


## Preliminary Technical Data

## FUNCTION LATCH

Table 5. Function Latch Map


Table 6. Initialization Latch Map


## THE FUNCTION LATCH

With C2, C1 set to 1,0, the on-chip function latch will be programmed. Table 5 shows the input data format for programming the Function Latch.

## Counter Reset

DB2 (F1) is the counter reset bit. When this is " 1 ", the $R$ counter and the $A, B$ counters are reset. For normal operation this bit should be " 0 ". U pon powering up, the F 1 bit needs to be disabled, theN counter resumes counting in "close" alignment with the R counter. (T hemaximum error is one prescaler cycle).

## Power Down

DB3 (PD1) and DB19 (PD2) on the ADF4116, provide programmable power-down modes. They are enabled by the CE pin.
When the CE pin is low, the device is immediately disabled regardless of the states of PD2, PD 1.
In the programmed asynchronous power-down, the device powers down immediately after latching a "1" into bit PD1, with the condition that PD2 has been loaded with a "0".
In the programmed synchronous power-down, the device power down is gated by the charge pump to prevent un-
wanted frequency jumps. Once the power-down is enabled by writing a " 1 " into bit PD 1 (on condition that a " 1 " has also been loaded to PD2), then the device will go into power-down after the first successive charge pump event.
When a power down is activated (either synchronous or asynchronous mode including CE-pin-activated power down), the following events occur:
All active DC current paths are removed.
The R, N and timeout counters are forced to their load state conditions.
The charge pump is forced into three-state mode.
The digital clock detect circuitry is reset.
The $R F_{\text {IN }}$ input is debiased.
The oscillator input buffer circuitry is disabled.
The input register remains active and capable of loading and latching data.

## MUXOUT Control

The on-chip multiplexer is controlled by $\mathrm{M} 3, \mathrm{M} 2$ and M 1 on the an ADF 4116 family. Table 5 shows the truth table.

## Phase Detector Polarity

DB7 (F2) of the function latch sets the Phase Detector Polarity. When the VCO characteristics are positive this should be set to "1". When they are negative it should be set to " 0 ".

## Charge Pump Three-State

This bit puts the charge pump into three-state mode when programmed to a " 1 ". It should be set to "0" for normal operation.

## Fastlock Enable Bit

DB9 of the Function Latch is the Fastlock Enable Bit. Only when this is " 1 " is Fastlock enabled.

## Fastlock Mode Bit

DB11 of the Function Latch is the Fastlock M ode bit. When Fastlock is enabled, this bit determines which Fastlock $M$ ode is used. If the Fastlock $M$ ode bit is " 0 " then Fastlock Mode 1 is selected and if the Fastlock Mode bit is " 1 ", then Fastlock Mode 2 is selected. If Fastlock is not enabled (DB9 $=$ " 0 ") , then DB11 (ADF 4116) determines the state of the $\mathrm{FL}_{0}$ output. $\mathrm{FL}_{0}$ state will be the same as that programmed to DB11.

## Fastlock Mode 1

In the ADF4116 family, the output level of $F L_{0}$ is programmed to a low state and the charge pump current is switched to the high value (1mA). $F L_{0}$ is used to switch a resistor in the loop filter and ensure stability while in Fastlock by altering the loop bandwidth.
The device enters Fastlock by having a " 1 " written to the CP Gain bit in the $N$ register. The device exits Fastlock by having a " 0 " written to the CP Gain bit in the $N$ register.

## Fastlock Mode 2

In the ADF4116 family, the output level of $\mathrm{FL}_{0}$ is programmed to a low state and the charge pump current is switched to the high value ( 1 mA ). $\mathrm{FL}_{0}$ is used to switch a resistor in the loop filter and ensure stability while in Fastlock by altering the loop bandwidth.
The device enters Fastlock by having a " 1 " written to the CP Gain bit in the $N$ register. The device exits Fastlock under the control of the Timer Counter. After the timeout period determined by the value in TC4-TC1, the CP Gain bit in the $N$ register is automatically reset to " 0 " and the device reverts to normal mode instead of Fastlock.

## Timer Counter Control

In the ADF4116 family, the user has the option of switching between two charge pump current values to speed up locking to a new frequency.
When using the Fastlock feature with the ADF4116 family, the normal sequence of events is as follows:
The user must make sure that Fastlock is enabled. Set DB9 of the ADF4116 family to " 1 ". The user must also choose which Fastlock M ode to use. As discussed in the previous section, Fastlock Mode 2 uses the values in the Timer Counter to determine the timeout period before reverting to normal mode operation after Fastlock. Fastlock Mode 2 is chosen by setting DB11 of the ADF4116 family to " 1 ".
The user must also decide how long they want the high current ( 1 mA ) to stay active before reverting to low current (250uA). This is controlled by the Timer Counter Control Bits DB14 to DB11 (TC4 - TC1) in the Function Latch. The truth table is given in Table 5.
Now, when the user wishes to program a new output frequency, they can simply program the $A, B$ counter latch with new values for A and B. At the same time they can set the CP Gain bit to a " 1 " , which sets the charge pump 1 mA for a period of time determined by TC4 - TC1. When this time is up, the charge pump current reverts to 250uA. At the same time the CP Gain Bit in the A, B Counter latch is reset to 0 and is now ready for the next time that the user wishes to change the frequency again.

## The Initialization Latch

When C2, C1 $=1,1$ then the Initialization Latch is programmed. This is essentially the same as the Function Latch (programmed when C2, C1 = 1, 0).
However, when the Initialization Latch is programmed there is a additional internal reset pulse applied to the R and N counters. This pulse ensures that the N counter is at load point when the N counter data is latched and the device will begin counting in close phase alignment.
If the Latch is programmed for synchronous powerdown (CE pin is High; PD1 bit is High; PD2 bit is Low), the internal pulse also triggers this powerdown. The prescaler reference and the oscillator input buffer are unaffected by the internal reset pulse and so close phase alignment is maintained when counting resumes.
When the first N counter data is latched after initialization, the internal reset pulse is again activated. However, successive N counter loads after this will not trigger the internal reset pulse.

## Device Programming After Initial Power-Up.

After initially powering up the device, there are three ways to program the device.

## Initialization Latch Method.

Apply $V_{D D}$.
Program the Initialization Latch (" 11 " in 2 Isb's of input word). M ake sure that F 1 bit is programmed to " 0 ".
Then do an $R$ load (" 00 " in 2 Isb's).
Then do an N load (" 01 " in 2 Isb's).
When the Initialisation Latch is loaded, the following occurs:

1. The function latch contents are loaded.
2. An internal pulse resets the R,N and timeout counters to load state conditions and also tri-states the charge pump. Note that the prescaler bandgpap reference and the oscillator input buffer are unaffected by the internal reset pulse, allowing close phase alignment when counting resumes.
3. Latching the first $N$ counter data after the initialisation word will activate the same internal reset pulse. Successive $N$ loads will not trigger the internal reset pulse unless there is another initialisation.

## The CE pin Method.

Apply $V_{D D}$.
Bring CE low to put the device into power-down. This is an asychronous power-down in that it happens immediately.
Program the Function Latch (10).
Program the R Counter Latch (00).
Program the N Counter Latch (01).
Bring CE high to take the device out of power-down.
The $R$ and $N$ counter will now resume counting in close alignment.
Note that after CE goes high, a duration of lus may be required for the prescaler bandgap voltage and oscillator input buffer bias to reach steady state.
CE can be used to power the device up and down in order to check for channel activity. The input register does not need to be reprogrammed each time the device is disabled and enabled as long as it has been programmed at least once after Vcc was initially applied.

## The Counter Reset Method

Apply $V_{D D}$.
Do a Function Latch Load (" 10 " in 2 Isb's). As part of this, load " 1 " to the F1 bit. This enables the counter reset.
Do an R Counter Load (" 00 " in 2 Isb's).
Do an N Counter Load ("01" in 2 Isb's).
Do a Function Latch Load (" 10 " in 2 Isb's). As part of this, load " 0 " to the F 1 bit. This disables the counter reset.
This sequence provides the same close alignment as the initialization method. It offers direct control over the internal reset. Note that counter reset holds the counters at load point and tri-states the charge pump, but does not trigger synchronous power-down. The counter reset method requires an extra function latch load compared to the initialization latch method.


[^0]:    * $\mathrm{RU}=\mathrm{T}$ hin Shrink Small Outline Package(TSSOP)
    $C P=C$ hip Scale Package
    C ontact thefactory for chip availability

