CMOS 175 MHz DDS/DAC Synthesizer

PRELIMINARY TECHNICAL DATA

AD9851

FEATURES
175 MHz Clock Rate
6X Internal Reference Clock Multiplier
On-chip High-performance 10 -bit DAC
\& High-speed Comparator
SFDR >48 dB@ 70 MHz Aout
32-bit Frequency Tuning W ord
Simplified Control Interface: Parallel
or Serial Loading Format
Phase Modulation Capability
Comparator Jitter <10pS RMS @ 20MHz
+5 V or +3.0 V Single Supply Operation
Low Power: 400 mW @ 175 MHz
Power-down Function
Ultra-Small 28-pin SSOP Packaging

APPLICATIONS

Frequency/phase-AgSènewave Synthesis

Clock Recovery and Locking Circuitry for Digital Communications
Digitally-controlled ADC Encode Generator
Agile L.O. applications in communications Quadrature oscillator
AM, FM, FSHMSK mode transmitter

GENERAL DESCRIPTION

The AD9851 is a highly integrated device that uses advanced DDS technology, coupled with an internal high-speed, high performance D/A converter, and comparator, to form a digitally programmable frequency synthesizer and clock generator function. When referenced to an accurate clock source, the AD9851 generates a stable frequency and phase-programmable digitized analog output sinewave. This sine wave can be used directly as a frequency source, or internally converted to a square wave for agile-clock ge ne rator applications. The AD9851's innovative high-speed DDS core provides a 32 -bit frequency tuning word, which results in an output tuning resolution of 40 milli-Hertz, for a 175 MHz reference clock. The AD9851 contains a unique X6 reference clock multiplier circuit that obviates the need for a high-speed reference oscillator. The 6X PLL multiplier has minimal impact on SFDR and phase noise characteristics. The device provides 5-bitsligftally-controlled phase modulation which enables phase shifting of its output in increments of $18990^{\circ}, 45^{\circ}, 22.5^{\circ}, 11.25^{\circ}$, and any combination the reof.
6/12/98
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights

The AD9851 contains an improved internal high-speed comparatorwhich can be configured to accept the (externally) filtered output of the DAC to generate a low-jitter output pulse.

The frequency tuning, control, and phase modulation words are loaded into the AD9851 via parallel or serial loading format. The parallel load format cons is ts of five iterative loads of an 8-bit control word (byte). The first 8 -bit byte controls output phase, power-down enable, and loading format; bytes 2-5 comprise the 32 -bit frequency tuning word. Serial loading is accomplished via a 40-bit serial data stream on a single pin. The AD9851 uses advanced CMOS technology to provide this breakthrough level of functionality on just 550 mW of power dissipation (+5 V supply), at the maximum clock rate of 175 MHz .

The AD9851 is available in a space-saving 28-pin SSOP, surface mount package that is pin-for-pin compatible with the popular AD9850 125 MHz DDS. It is specified to operate over the extended indus trial te mperature range of -40∞ to $+85 \infty$ C.
of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$			
Maximum Junction Temp. $+165{ }^{\circ} \mathrm{C}$	Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Vs.	+6 V	Operating Temp.	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Digital Inputs	-0.7 V to +Vs	Lead Temp. (10 sec. soldering) $+300^{\circ} \mathrm{C}$
Digital Output Current	5 mA		

AD9851 ELECTRICAL CHARACTERISTICS (Vs=+5 V $\pm 5 \%$ or $+3.0 \mathrm{~V} \pm 5 \%$ except as noted, Rset=3.9 $\mathrm{k} \Omega$)

\left.| Parameter | Temp | Test Level | AD9851BRS | | Units |
| :--- | :---: | :---: | :---: | :---: | :---: |
| | | | | Min | Typ |
| Max | | | | | |$\right]$

AD9851 ELECTRICAL CHARACTERISTICS (Vs=+5 V $\pm \mathbf{5 \%}$ or $+3.0 \mathrm{~V} \pm \mathbf{5 \%}$ except as noted, Rset=3.9 k^{Ω})

| Parameter | Temp | Test Level | $\begin{array}{c}\text { AD9851BRS } \\ \text { Min } \\ \text { Typ }\end{array}$ | | Max |
| :--- | :---: | :---: | :---: | :---: | :---: |$]$ Units

NOTES

${ }^{1}$ Absolute maximum ratings are limiting values, to be applied individually, and beyond which the serviceability of the circuit may be impaired. Functional operability under any of these conditions is not necessarily implied. Exposure of absolute maximum rating conditions for extended periods of time may affect device reliability.

EXPLANATION OF TEST LEVELS

Test Level

I - 100% Production Tested.
III - Sample Tested Only.
IV - Parameter is guaranteed by design and characterization testing.
V - Parameter is a typical value only.
VI - All devices are 100% production tested at $+25^{\circ} \mathrm{C}$. 100% production tested at temperature extremes for military temperature devices; guaranteed by design and characterization testing for industrial devices.

Table I. AD9851 PIN-FUNCTION DESCRIPTIONS	
$\begin{aligned} & \hline \text { REFCLK } \\ & (\operatorname{Pin} 9) \\ & \hline \end{aligned}$	Reference clock input. This may be a continuous TTL-level pulse train or sine input biased at +2.5 V . The rising edge of this clock initiates operation.
Rset (Pin 12)	This is the DAC's external Rset connection. This resistor value sets the DAC fullscale output current. For normal applications (FS Iout $=10 \mathrm{~mA}$), the value for Rset is $3.9 \mathrm{k} \Omega$ connected to ground.
AGND (Pins 10, 19)	Analog Ground. These pins are the ground return for the analog circuitry (DAC and comparator).
DGND (Pins 5, 24)	Digital Ground. These are the ground return pins for the digital circuitry.
VDD (Pins 6, 23)	Supply voltage pins for digital circuitry.
AVCC (Pins 11, 18)	Supply voltage for the analog circuitry (DAC and comparator).
W_CLK (Pin 7)	Word load clock. This clock is used to load the parallel or serial frequency/phase/control words
$\begin{array}{\|l} \hline \text { FQ_UD } \\ \text { (Pin 8) } \\ \hline \end{array}$	Frequency Update. When this pin is set high, the DDS will update to the frequency (or phase) loaded in the data input register, it then resets the data register.
$\begin{aligned} & \hline \text { D0-D7 } \\ & \text { (Pins 1-4, 25-28) } \\ & \hline \end{aligned}$	8 -bit Data Input. This is the 8 -bit data port for iteratively loading the 32 -bit frequency \& and 8 -bit phase/ control word. D7=MSB; D0=LSB. D7 (Pin 25) also serves as the input pin for the 40-bit serial data word.
$\begin{aligned} & \hline \text { RESET } \\ & \text { (Pin 22) } \\ & \hline \end{aligned}$	Reset. This is the master reset pin; when set high it clears all registers and the DAC output will go to Cosine 0 (after additional clock cycles).
$\begin{array}{\|l} \hline \text { IOUT } \\ (\operatorname{Pin} 21) \end{array}$	The true output of the differential DAC.
$\begin{array}{\|l\|} \hline \text { IOUTB } \\ (\operatorname{Pin} 20) \\ \hline \end{array}$	The complementary output of the differential DAC.
$\begin{aligned} & \text { DACBP } \\ & \text { (Pin 17) } \end{aligned}$	DAC Bypass. This is the DAC baseline reference; this pin is internally bypassed and should normally be considered a "no connect" for optimum performance.
$\begin{array}{\|l\|} \hline \text { VINP } \\ (\text { Pin 16) } \end{array}$	Voltage input positive. This is the comparator's positive input pin.
VINN (Pin 15)	Voltage input negative. This is the comparator's negative input pin.
$\begin{array}{\|l} \hline \text { VOUTP } \\ \text { (Pin 14) } \\ \hline \end{array}$	Voltage output positive. This is the comparator's positive output pin.
$\begin{aligned} & \hline \text { VOUTN } \\ & \text { (Pin 13) } \end{aligned}$	Voltage output negative. This is the comparator's negative output pin.

Figure 1. Pin Function Assignments

Table II. 8-bit Parallel Control Word Functional Assignment

	data[7]	data[6]	data[5]	data[4]	data[3]	data[2]	data[1]	data[0]
W0	Phase-b0 (MSB)	Phase-b1	Phase-b2	Phase-b3	Phase-b4 (LSB)	Power- down	Logic 0 for factory use only	6X REF CLK enable
W1	Freq -b0 (MSB)	Freq-b1	Freq-b2	Freq -b3	Freq-b4	Freq-b5	Freq -b6	Freq -b7
W2	Freq -b8	Freq-b9	Freq-b10	Freq-b11	Freq-b12	Freq-b13	Freq-b14	Freq-b15
W3	Freq-b16	Freq-b17	Freq-b18	Freq-b19	Freq-b20	Freq-b21	Freq-b22	Freq-b23
W4	Freq-b24	Freq-b25	Freq -b26	Freq-b27	Freq-b28	Freq-b29	Freq-b30	Freq-b31 (LSB)

Table III. 40-bit Serial-load Word Functional Assignment:

W0	Freq-b31 (LSB)
W1	Freq-b30
W2	Freq-b29
W3	Freq-b28
W4	Freq-b27
W5	Freq-b26
W6	Freq-b25
W7	Freq-b24
W8	Freq-b23
W9	Freq-b22
W10	Freq-b21
W11	Freq-b20
W12	Freq-b19
W13	Freq-b18
W14	Freq-b17

W15	Freq-b16
W 16	Freq-b15
W 17	Freq-b14
W 18	Freq-b13
W 19	Freq-b12
W 20	Freq-b11
W 21	Freq-b10
W22	Freq-b9
W23	Freq-b8
W24	Freq-b7
W25	Freq-b6
W26	Freq-b5
W27	Freq-b4
W28	Freq-b3
W29	Freq-b2

W30	Freq-b1
W31	Freq-b0 (MSB)
W32	6X REFCLK enable
W33	Always logic 0
W34	Power-down
W35	Phase-b0 (LSB)
W36	Phase-b1
W37	Phase-b2
W38	Phase-b3
W39	Phase-b4 (MSB)

Logic High = true
Logic Low $=$ false

Figure 2. Mechanical Diagram
28-pin Shrink Small Outline Package

For additional information regarding the AD9851 contact:
Jim Surber, Product Marketing Manager
Analog Devices, Inc.
7910 Triad Center Drive
Greensboro, NC 27409
Phone: 3366054365 FAX 3366054187
EMAIL: jim.surber@analog.com or

Rick Cushing, Applications Engineer
Analog Devices, Inc.
7910 Triad Center Drive
Greensboro, NC 27409
Phone: 3366054258 FAX 3366054187
EMAIL: rick.cushing@analog.com

