

10–Bit, 65/80/105 MSPS 3V A/D Converter

Preliminary Technical Data

2/1/00

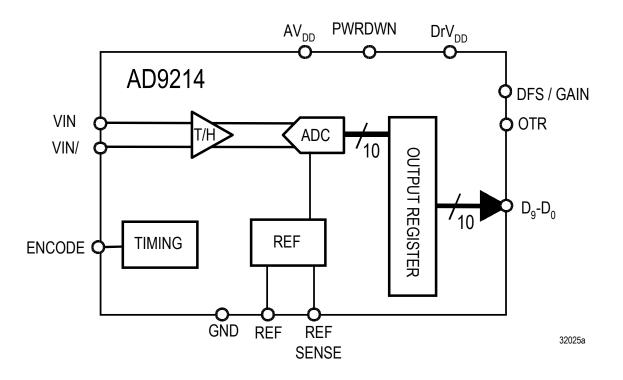
AD9214

The AD9214 is an 10-bit monolithic sampling analog-to-digital converter with an on-chip track-and-hold circuit and is optimized for low cost, low power, small size and ease of use. The product operates up to 105 Msps conversion rate with outstanding dynamic performance over its full operating range.

The ADC requires only a single 3.3V (2.7V to 3.6V) power supply and an encode clock for full–performance operation. No external reference or driver components are required for many applications. The digital outputs are TTL/CMOS compatible and a separate output power supply pin supports interfacing with 3.3V or 2.5V logic.

The clock input is TTL/CMOS compatible. In the power down state, the digital outputs are driven to a high-impedence state. A gain option allows support for either 1Vp-p or 2Vp-p (-65) analog signal input swing.

Fabricated on an advanced CMOS process, the AD9214 is available in a 28 pin surface mount plastic package (28 SSOP) specified over the industrial temperature range (-40°C to +85°C).


FEATURES

10-Bit, 65, 80, and 105 Msps ADC Low Power: - 170 mW at 65 Msps with Fin = 10.3 MHz - 250 mW at 105 Msps with Fin = 10.3 MHz On-Chip Reference and Track/Hold 300 MHz Analog Bandwidth SNR = 56dB @ 41MHz 1Vp-p or 2Vp-p Analog Input Range option Single +3.3V Supply Operation (2.7V - 3.6V) Two's compliment data format option

Power Down mode = 5mW

APPLICATIONS

Battery Powered Instruments Hand-Held Scopemeters Low Cost Digital Oscilliscopes Communications Ultrasound Equipment

REV. PrB

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. © Analog Devices, Inc., 2000

One Technology Way, P.O Box 9106, Norwood, MA 02062–9106, USA Tel: 617/329–4700 Fax: 617–326–8703

AD9214—SPECIFICATIONS

ELECTRICAL CHARACTERISTICS(VDD = 3.0V, Input Voltage of 1Vp-p; external reference, unless otherwise noted)

		Test	AD9	214BRS	-105	AD	9214BRS	-80	AD	9214BRS	-65	
Parameter	Temp	Level	Min	Typical		Min	Typical		Min	Typical		Units
RESOLUTION				10			10			10		bits
DC ACCURACY								1		-		
Differential Nonlinearity	+25°C	Ι		±0.5			±0.5			±0.5		LSB
2	Full	VI		20.0			20.0			20.0		LSB
Integral Nonlinearity	+25°C	I		±0.75			±0.75			±0.75		LSB
integrar i toniniearity	Full	VI		10.75			10.75			10.75		LSB
No Missing Codes	Full	VI		GNT			GNT			GNT		LOD
Gain Error ¹	+25°C	I		± 2.5			±2.5			±2.5		% FS
Guill Elifor	Full	VI		12.3			12.3			12.5		% FS
Gain Tempco ¹	Full	VI										ppm/°C
ANALOG INPUT	1 un											ppin c
Input Voltage Range	Full	V		1 or 2			1 or 2			1 or 2		V p–p
(differential)	1 un	•		1 01 2			1 01 2			1 01 2		• • • •
Common Mode Voltage	Full	V										v
Input Offset Voltage	+25°C	Ĭ		±10			±10			±10		mV
input Onset Voltage	Full	VI		±10			±10			±10		mV
Reference Voltage	Full	VI		1.25			1.25			1.25		V
Input Resistance	+25°C	I		1.20			1.20			1.20		kΩ
input resistance	Full	VI										kΩ
Input Capacitance	+25°C	V		2	$\sim \mathbf{X}$		2			2		pF
Input Bias Current	+25°C	Ĭ		2			2			2		μΑ
input Blus Current	Full	VI										
Analog Bandwidth, Full Power	+25°C	V		300			300			150		μA MHz
SWITCHING PERFORMANCE				200						100		WITTZ
Maximum Conversion Rate	Full	VI	105			80			65			Msps
Minimum Conversion Rate	+25°C	IV	105		10	00		10	05		10	Msps
Encode Pulse Width High(t_{EH})	+25°C	IV	3.8		1000	5.0		1000	7.0		1000	ns
Encode Pulse Width $Low(t_{EL})$	+25°C	IV	3.9		1000	5.0		1000	7.0		1000	ns
Aperature Delay (t_A)	+25°C	V	5.7	900	1000	5.0	900	1000	7.0	900	1000	ps
Aperature Uncertainty(Jitter)	+25°C	V		5			5			5		ps ps rms
Output Valid Time $(t_V)^2$	Full	VI		5.0			5.5			6.0		ns
Output Value Thile(t_V) Output Propagation Delay(t_{PD}) ²	Full	VI		5			5			5		cycles
Power Up Time	+25°C	IV		60			75			105		ns
DIGITAL INPUTS	125 0			00		v	15			105		115
Logic "1" Voltage	Full	VI	2.0			2.0			2.0			v
Logic "0" Voltage	Full	VI	2:0		0.8	2.0		0.8	2.0	0.8		v
Logic "1" Current	Full	VI			±1			±1		±1		μA
Logic "0" Current	Full	VI			±1			± 1		±1		μΑ
Input Capacitance	+25°C	V		4.5	±1		4.5	±1		±1	4.5	pF
DIGITAL OUTPUTS	. 25 C	*		1.5			r.J				т.Ј	P
Logic "1" Voltage	Full	VI	2.45			2.45			2.45			V
Logic "0" Voltage	Full	VI VI	2.40		0.05	2.73		0.05	2.43		0.05	v
POWER SUPPLY	Tun	¥ 1			0.05			0.05			0.05	v
Power Dissipation ⁵	Full	VI		250			240			170		mW
Power-Down Dissipation	Full	VI VI		230	10		240 5	10		5	10	mW
Power Supply Rejection Ratio	+25°C	I		5	10		5	10		5	10 14	mV/V
(PSRR)	125 C	1			14			14			14	111 V / V

		Test	AD9214BRS-105	AD9214BRS-80	AD9214BRS-65	
Parameter	Temp	Level	Min Typical Max	Min Typical Max	Min Typical Max	Units
DYNAMIC PERFORMANCE ³						
Transient Response	+25°C	V	tbf	tbf	tbf	ns
Overvoltage Recovery Time	+25°C	V	tbf	tbf	tbf	ns
Signal-to-Noise Ratio (SNR)						
(Without Harmonics)			58	58	58	dB
fin = 10.3 MHz	+25°C	Ι	57	57		dB
fin = 41 MHz	+25°C	Ī	56			
Singal-to-Noise Ratio (SINAD)						
(With Harmonics)			56	56	56	dB
fin = 10.3 MHz	+25°C	Ι	56	56		dB
fin = 41 MHz	+25°C	Ī	55			uD
	20 0	-				
Effective Number of Bits						
fin = 10.3 MHz	+25°C	V	9.0	9.0	9.0	bits
fin = 41 MHz	+25°C	v	9.0	9.0		bits
2 nd Harmonic Distortion						
fin = 10.3 MHz	+25°C	Ι	70	tbf	tbf	dBc
fin = 41 MHz	+25°C	Ι	66	tbf		dBc
3 rd Harmonic Distortion						
fin = 10.3 MHz	+25°C	Ι	66	tbf	tbf	dBc
fin = 41 MHz	+25°C	Ι	64	tbf		dBc
Two-Tone Intermod Distortion						
(IMD)						
fin = 10.3 MHz	+25°C	V	64	tbf	tbf	dBc
fin = 41 MHz	+25°C	V	tbf	tbf		dBc
1000000000000000000000000000000000000	+23°C	v	lDI			авс

1

Gain error and gain temperature coefficient are based on the ADC only (with a fixed 1.25V external reference). t_V and t_{PD} are measured from the 1.5V level of the ENCODE input to the 10% / 90% levels of the digital outputs swing. The digital output load during test is 2.

not to exceed an AC load of 10pF or a DC current of $+/-40\mu$ A. SNR / harmonics based on an analog input voltage of -0.7 dBfs referenced to a 1.0Vp-p full–scale input range for the 80 and 105 Msps versions and to a 3. 2.0Vp-p for the 65 Msps version. Digital supply current based on $V_{DD} = +2.5V$ output drive with <10pF loading under dynamic test conditions. Power dissipation is measured under the following conditions: Analog input of 10.3 MHz, sine wave.

4.

5.

T.C.

-3-

ORDERING GUIDE

Model	Temperature Range	Package Option
AD9214BRS-65,-	-40°C to +85°C	RS-28
80,-105		
AD9214-EVAL	+25°C	Evaluation Board

*RS = 28 pin Small Shrink Outline Package.

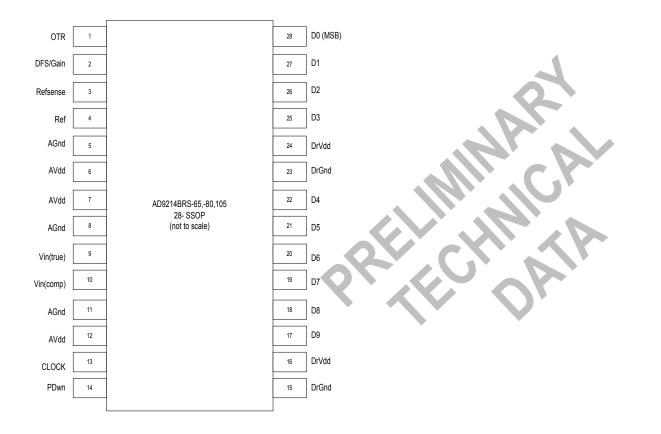
EXPLANATION OF TEST LEVELS

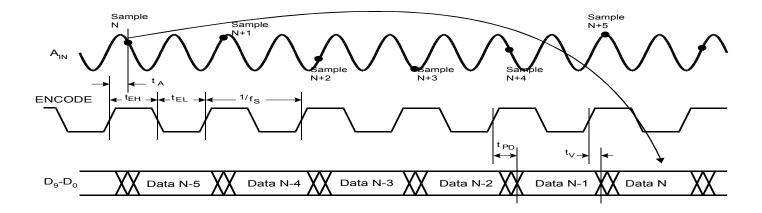
Test Level

- I 100% production tested.
- II 100% production tested at +25°C and sample tested at specified temperatures.
- III Sample tested only.
- IV Parameter is guaranteed by design and characterization testing.
- V Parameter is a typical value only.

VI 100% production tested at +25°C; guaranteed by design and characterization testing for industrial temperature range; 100% production tested at temperature extremes for military devices.

ABSOLUTE MAXIMUM RATINGS^{*}


V _D ,V _{DD}	+4 V
Analog Inputs	
Digital Inputs	0.5V to V_{DD} + 0.5 V
VREF IN	0.5V to $V_{\rm D}$ + 0.5 V
Digital Output Current	20 mA
Operating Temperature	$-55^{\circ}C$ to $+125^{\circ}C$
Storage Temperature	65°C to +150°C
Maximum Junction Temperature	+175°C
Maximum Case Temperature	+150°C


* Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions outside of those indicated in the operation sections of this specification is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

PIN DESCRIPTIONS

Pin Number		
AD9214BRS-	Name	Function
65, -80, -105		
1	OTR	Out of Range indicator.
2	DFS/Gain	Data format select and Gain mode select. (Set HIGH to AV_{DD} = Two's
		complement, 1Vp-p support; Set LOW to AGND = Offset binary, 1Vp-p
		support; Set to Refout = Two's Complement, 2Vp-p support; Floating = Offset
		binary, 2Vp-p support)
3	REFSENSE	Reference input mode for ADC (+1.25V typ, $\pm 10\%$). (Set HIGH to AVDD =
		disabled. A clean and accurate 1.25V external reference is required and is
		connected to REF; Set LOW to AGND = internal reference is used and REF
		should be bypassed with 0.1 μ F to ground.
4	REF	Interal Reference Output (+1.25V typ); Bypass with 0.1 µF to ground. Or,
		external reference input. See Pin #3 function.
5,8,11	AGND	Analog ground.
6,7,12	AV _{DD}	Analog +3V power supply.
9	VIN	Analog Input for ADC
10	VIN/	Analog Input for ADC (Can be left open if operating in single-ended mode but
		recommend connection to a $0.1\mu F$ capacitor and a 25 Ω resistor in series to
		ground for better input matching.)
13	CLOCK	Encode Clock for ADC (ADC samples on rising edge of CLOCK)
14	PWRDN	Power-Down function select; Logic HIGH for Power-down Mode (digital
		outputs go to high impedance state)
15,23	DrGND	Digital output ground.
16,24	DrV _{DD}	Digital output power supply. Nominally +2.5V to +3.6V.
17-22,25-28	D0(msb) - D9	Digital Outputs of ADC

PIN CONFIGURATION

31026b

Figure 1. Timing Diagram

-5-

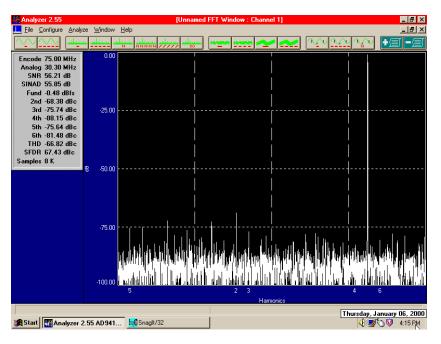


Figure 2. Preliminary Performance; Fs=75Msps, Fin=30MHz, Differential Input

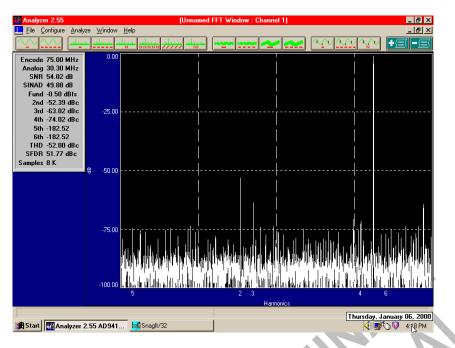
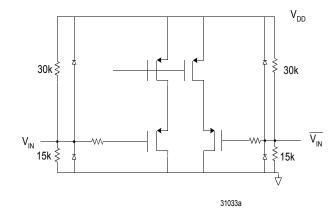
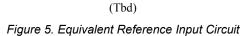



Figure 3. Preliminary Performance; Fs=75Msps, Fin=30MHz, Single-ended Input


1141-51

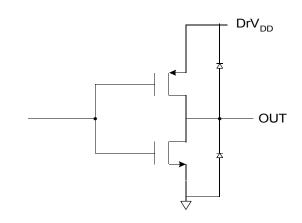
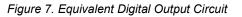

Step	A _{IN} – A _{IN} \	Offset Binary Output	Two's Compliment Output	
1024	0.512	1111 1111 11	0111 1111 11	
•	•	•	•	
•	•	•	•	
512	0.002	1000 0000 00	0000 0000 00	
511	-0.002	0111 1111 11	1111 1111 11	
•	•	•	•	
•	•	•	•	
0	-0.512	0000 0000 00	1000 0000 00	

Table 1. Output Coding (VREF = +1.25 and Input range of 1Vp-p)



31034a

(Tbd)

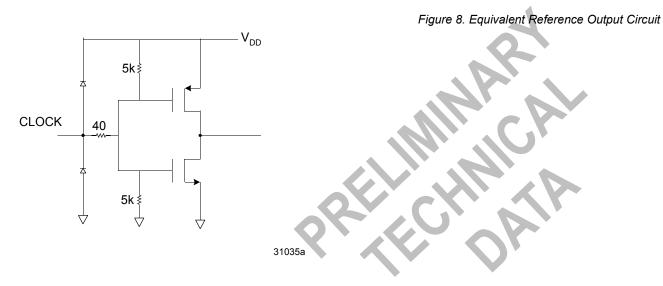


Figure 6. Equivalent Encode Input Circuit

APPLICATION NOTES

THEORY OF OPERATION

The AD9214 architecture is a bit per stage pipeline type converter utilizing switch capacitor techniques. These stages determine the 7 MSBs and drive a three bit flash. Each stage provides sufficient overlap and error correction allowing optimization of comparator accuracy. The input buffer is differential and both inputs are internally biased. This allows the most flexible use of AC or DC and differential or single ended input modes. The output staging block aligns the data, carries out the error correction and feeds the data to output buffers. The output buffers are powered from a separate supply allowing adjustment of the output voltage swing and during powerdown, go to a high impedance state.

USING THE AD9214

ENCODE Input

Any high-speed A/D converter is extremely sensitive to the quality of the sampling clock provided by the user. A Track/Hold circuit is essentially a mixer. Any noise, distortion, or timing jitter on the clock will be combined with the desired signal at the A/D output. For that reason, considerable care has been taken in the design of the ENCODE input of the AD9214, and the user is advised to give commensurate thought to the clock source. The ENCODE input is fully TTL/CMOS compatible.

Digital Outputs

The digital outputs are TTL/CMOS compatible for lower power consumption. The format can be selected for either offset binary or two's complement. During powerdown, the outputs transistion to a high impedance state. It takes approximately 15 clock cycles after disabling powerdown to restore full operation.

Analog Input

The analog input to the AD9214 is a differential buffer. For best dynamic performance, impedances at VIN and VIN\ should match.

Special care was taken in the design of the analog input section of the AD9214 to prevent damage and corruption of data when the input is overdriven. The nominal input range is 1.0 Vp–p for the 80 and 100 Msps versions, but can support a 2.0Vp-p input range at a slight degradation in performance. Care has been taken to optimize the 2Vp-p input range for the 65 Msps version, but a 1Vp-p is also supported.

Voltage Reference

A stable and accurate 1.25 V voltage reference is built into the AD9214 (VREF OUT) for the 80 and 100 Msps versions. A stable and accurate 2.25 V voltage reference is built into the 65 Msps version. In normal operation, the internal reference is used by strapping Pins 3 and 4 together.

The input range can be adjusted by varying the reference voltage applied to the AD9214. No appreciable degradation in performance occurs when the reference is adjusted $\pm 5\%$. The full–scale range of the ADC tracks reference voltage changes linearly.

Timing

The AD9214 provides latched data outputs, with five pipeline delays. Data outputs are available one propagation delay (t_{PD}) after REV .PrB

the rising edge of the encode command *(Figure 1. Timing Diagrams)*. The length of the output data lines and loads placed on them should be minimized to reduce transients within the AD9214; these transients can detract from the converter's dynamic performance.

The minimum guaranteed conversion rate of the AD9214 is 10 MSPS. At clock rates below 10 MSPS, dynamic performance will degrade.

11 1

Date	Revision	Modification
4/2/99	R0.5	Updated Gain Error, Input Offset voltage, Reference voltage (-65), total power dissipation, and SNR (- 105).
7/7/99	R0.6	Updated block diagram to reflect pin names. Updated part number and package to 28-SSOP.
9/15/99	R0.7	Defined pinouts, included some equivalent circuits and added applications section. Updated power dissipation, reference voltage on -65 , t _{EH} and t _{EL} , and t _V .
9/28/99	R0.8	Changed REFOUT pin name to REF and clarified definition.
1/31/00	R0.9	Updated Tv and units on prop delay. Inserted prelim performance. Updated SNR on front page and specs (56dB)