

Preliminary Technical Data

FEATURES

Low Offset Voltage Single-Supply Operation: 2.7 V to 5.5 V Low Supply Current: 700 µA/Amplifier Wide Bandwidth: 8 MHz Slew Rate: 5 V/µs No Phase Reversal Low Input Currents Unity Gain Stable

APPLICATIONS

Barcode Scanners ASIC Input or Output Amplifier Multi Pole Filters Medical Instrumentation DAC Buffer Audio

GENERAL DESCRIPTION

The AD8601, AD8602 and AD8604 are single, dual and quad rail-to-rail input and output amplifiers with very low offset voltage and wide bandwidths. These amplifiers use a new trimming technique that yields low offset voltages without laser trimming. All are guaranteed to operate from a 3 V single supply up to a 5 V supply.

The combination of low offsets, very low input bias currents, and high speed make these amplifiers useful in a wide variety of applications. Filters, integrators and diode amplification all benefit from this combination of performance. Supply current is only 750 μ A per amplifier at 5.0 V.

Applications include bar code scanners, multi-pole filters, and a wide range of other circuits. The ability to swing rail-to-rail at the inputs and outputs enables designers to buffer CMOS DACs, ASICs or other wide output swing devices in single-supply systems.

The AD8601, AD8602 and AD8604 are specified over the extended industrial (-40°C to +125°C) temperature range. The AD8601 is available in the SOT23-5 package. The AD8602 is available in SO-8 and 8-lead MSOP surface mount packages. The AD8604 is available in narrow SO-14 and 14-lead TSSOP surface mount packages. All TSSOP, MSOP and SOT versions are available in tape and reel only.

Low Offset Single Supply Amplifiers AD8601/AD8602/AD8604

FUNCTIONAL BLOCK DIAGRAM 5-Lead SOT-23 (RT Suffix)

+IN A 3		12 +IN D
V+ 4	AD8604	11 V-
+IN B 5		10 +IN C
-IN B		9 –IN C
OUT B 7		в оот с

REV. PrB

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700 World Wide Web Site: http://www.analog.com Fax: 781/326-8703 © Analog Devices, Inc., 1999

AD8601/AD8602/AD8604-SPECIFICATIONS

ELECTRICAL CHARACTERISTICS ($V_S = 3 V$, $V_{CM} = 1.5 V$, $T_A = 25^{\circ}C$ unless otherwise noted)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
INPUT CHARACTERISTICS						
Offset Voltage	Vos	$0 \text{ V} \le \text{V}_{\text{CM}} \le 3 \text{ V}$			750	μV
In most Dire Comment	т	$-40^{\circ}\mathrm{C} \le \mathrm{T}_{\mathrm{A}} \le +125^{\circ}\mathrm{C}$		0.0	1,100	μV
Input Blas Current	IB	-40°C < T↓ < +85°C		0.2	60 100	pA nA
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$			1,000	pA
Input Offset Current	I _{OS}	Α		0.1	30	pA
		$-40^{\circ}C \le T_A \le +85^{\circ}C$			50	pА
		$-40^{\circ}\mathrm{C} \le \mathrm{T}_{\mathrm{A}} \le +125^{\circ}\mathrm{C}$			500	pA
Input Voltage Range	CMPP	$\mathbf{V} = 0 \mathbf{V}$ to $3 \mathbf{V}$	0	02	3	V JD
Large Signal Voltage Gain		$V_{CM} = 0$ V to 5 V $R_{r} = 2 k\Omega , V_{O} = 0.5 V to 2.5 V$	30	100		V/mV
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$		50	2		μV/°C
OUTPUT CHARACTERISTICS						
Output Voltage High	V _{OH}	$I_{L} = 1.0 \text{ mA}$	2.92	2.95		V
		$-40^{\circ}C \le T_A \le +125^{\circ}C$	2.88			V
Output Voltage Low	V _{OL}	$I_L = 1.0 \text{ mA}$		20	35	mV
Output Current	т	$-40^{\circ}\mathrm{C} \le \mathrm{T}_{\mathrm{A}} \le +125^{\circ}\mathrm{C}$		+20	50	mV m A
Closed Loop Output Impedance	ZOUT	$f = 1$ MHz, $A_{y} = 1$		$\frac{1}{12}$		Ω
POWER SLIPPLY	001					
Power Supply Rejection Ratio	PSRR	$V_{s} = 2.5 V \text{ to } 5.5 V$	67	80		dB
Supply Current/Amplifier	I _{SY}	$V_0 = 0 V$		680	1,000	μA
		$-40^{\circ}C \le T_A \le +125^{\circ}C$			1,300	μΑ
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 2 k\Omega$		5		V/µs
Settling Time	ts	To 0.1%		<0.5		μs
Gain Bandwidth Product	GBP			8		MHz
Phase Margin	Ψο			50		Degrees
NOISE PERFORMANCE		c = 1.1 III		22		TT/ TT
voltage Noise Density	e _n	I = I KHZ $f = 10 kHZ$		33 18		nV/\sqrt{Hz}
Current Noise Density	i _n	1 - 10 MIZ		0.05		pA/\sqrt{Hz}

NOTE

Specifications subject to change without notice.

AD8601/AD8602/AD8604

ELECTRICAL CHARACTERISTICS ($V_s = 5.0 \text{ V}$, $V_{CM} = 2.5 \text{ V}$, $T_A = 25^{\circ}$ C unless otherwise noted)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
INPUT CHARACTERISTICS Offset Voltage	V _{os}	$0 V \le V_{CM} \le 5 V$ -40°C ≤ T. ≤ +125°C			500 1 300	μV
Input Bias Current	I _B	$-40^{\circ}C \le T_{A} \le +85^{\circ}C$		0.2	60 100	pA pA
Input Offset Current	I _{OS}	$-40^{\circ}C \le T_A \le +125^{\circ}C$ $-40^{\circ}C \le T_A \le +85^{\circ}C$ $-40^{\circ}C \le T_A \le +125^{\circ}C$		0.1	1,000 30 50 500	pA pA pA pA
Input Voltage Range Common-Mode Rejection Ratio Large Signal Voltage Gain Offset Voltage Drift	CMRR A _{VO} ΔV _{OS} /ΔT	$V_{CM} = 0 V \text{ to } 5 V$ $R_L = 2 k\Omega$, $V_0 = 0.5 V \text{ to } 4.5 V$ $-40^{\circ}\text{C} \le T_A \le +125^{\circ}\text{C}$	0 74 30	89 70 2	5	V dB V/mV μV/°C
OUTPUT CHARACTERISTICS Output Voltage High	V _{OH} V _{OH}	$I_{L} = 1.0 \text{ mA}$ $I_{L} = 10 \text{ mA}$	4.925 4.7	4.975 4.77		V V V
Output Voltage Low	V _{OL} V _{OL}	$I_{L} = 1.0 \text{ mA}$ $I_{L} = 10 \text{ mA}$ $-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$	4.00	15 125	30 175 250	w mV mV mV
Output Current Closed Loop Output Impedance	I _{OUT} Z _{OUT}	$f = 1$ MHz, $A_V = 1$		±50 10		mA Ω
POWER SUPPLY Power Supply Rejection Ratio Supply Current/Amplifier	PSRR I _{SY}	$V_{S} = 2.5 V \text{ to } 5.5 V$ $V_{O} = 0 V$ $-40^{\circ}C \le T_{A} \le +125^{\circ}C$	67	80 750	1,200 1,500	dB μA μA
DYNAMIC PERFORMANCE Slew Rate Full-Power Bandwidth Settling Time Gain Bandwidth Product Phase Margin	SR BW _P t _s GBP Φο	R _L = 2 kΩ 1% Distortion To 0.01%		6 360 <1.0 8.4 55		V/µs kHz µs MHz Degrees
NOISE PERFORMANCE Voltage Noise Density Current Noise Density	e _n e _n i _n	f = 1 kHz f = 10 kHz		33 18 0.05		nV/\sqrt{Hz} nV/\sqrt{Hz} pA/\sqrt{Hz}

NOTE

Specifications subject to change without notice.

AD8601/AD8602/AD8604

ABSOLUTE MAXIMUM RATINGS¹

Supply Voltage+6 V
Input Voltage GND to V _S
Differential Input Voltage ±5.5 V
Storage Temperature Range
RU, R, RM, RT Packages65°C to +150°C
Operating Temperature Range
AD8601/AD8602/AD8604
Junction Temperature Range
RU, R, RM, RT Packages65°C to +150°C
Lead Temperature Range (Soldering, 60 sec)+300°C

NOTES

¹Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

$\theta_{JA}{}^1$	θ _{JC}	Units
230	92	°C/W
158	43	°C/W
190	44	°C/W
120	36	°C/W
180	35	°C/W
	θ _{JA} 1 230 158 190 120 180	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

NOTE

 ${}^{1}\theta_{JA}$ is specified for worst case conditions, i.e., θ_{JA} is specified for device in socket for PDIP packages; θ_{JA} is specified for device soldered onto a circuit board for surface mount packages.

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
AD8601ART ¹	-40°C to +125°C	5-Lead SOT-23	RT-5
AD8602AR	-40°C to +125°C	8-Lead SOIC	SO-8
AD8602ARM ²	-40°C to +125°C	8-Lead MSOP	RM-8
AD8604AR	-40°C to +125°C	14-Lead SOIC	SO-14
AD8604ARU ²	-40°C to +125°C	14-Lead TSSOP	RU-14

¹Available in 2,500 piece reels only. ²Available in 3,000 piece reels only.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD8601/AD8602/AD8604 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

