Low Cost, 300MHz Rail-to Rail Amplifiers

Preliminary Technical Data

FEATURES
Low Cost
Single (AD8061)
Dual (AD8062)
Single with Disable (AD8063)
Rail-to-rail Output swing
High Speed
$300 \mathrm{MHz},-3 \mathrm{~dB}$ Bandwidth ($\mathrm{G}=+1$)
$800 \mathrm{~V} / \mu \mathrm{s}$ Slew Rate
Operates on 2.7V to 8V Supplies
Excellent Video Specs ($\mathrm{RL}_{\mathrm{L}}=150 \Omega, \mathrm{G}=+2$)
Gain Flatness 0.1 dB to 30 MHz
0.01\% Differential Gain Error
0.03° Differential Phase Error
Low Power
6.8 mA /Amplifier Typ Supply Current

AD8063 400 μ A when disabled
Small Packaging
AD8061 Available in SOIC-8 and SOT23-5
AD8062 Available in SOIC-8 and μ SOIC
AD8063 Available in SOIC-8 and SOT23-6

APPLICATIONS
Imaging
Photodiode Pre-amp
Professional Cameras
Hand Sets
Base Stations
DVD / CD
Filters
A-to-D Driver

PRODUCT DESCRIPTION

The AD8061, AD8062, and AD8063 are rail-to-rail out voltage feedback amplifiers offering ease of use and low cost. They have bandwidth and slew rate typically found in current feedback amplifiers. All have a wide input voltage range and output voltage swing making them easy to use on single supplies as low as 2.7 V .

Despite being low cost, the AD8061, AD8062, and AD8063 provide excellent overall performance. For video applications, their differential gain and phase errors are 0.01% and 0.03° into a 150Ω load, along with 0.1 dB flatness out to 30 MHz . Additionally, they offer wide bandwidth to 300 MHz along with $800 \mathrm{~V} / \mathrm{\mu s}$ slew rate.

The AD8061, AD8062, and AD8063 offer a typical low power of $7.0 \mathrm{~mA} / \mathrm{amplifier}$, while being capable of delivering up to 50 mA of load current. The AD8063 has a power down disable feature that reduces the supply current to $400 \mu \mathrm{~A}$. These

CONNECTION DIAGRAMS
(TOP VIEW)

SOIC-8 (R) and ${ }^{\mu}$ SOIC (RM)

features make the AD8063 ideal for portable and battery powered applications where size and power is critical.

Model	Operating Temperature Range Package	
AD8061AR	-40 to $+85^{\circ} \mathrm{C}$	8 Lead SOIC
AD8061ART	-40 to $+85^{\circ} \mathrm{C}$	5 Lead SOT23-5
AD8062AR	-40 to $+85^{\circ} \mathrm{C}$	8 Lead SOIC
AD8062ARM	-40 to $+85^{\circ} \mathrm{C}$	8 Lead μ SOIC
AD8063AR	-40 to $+85^{\circ} \mathrm{C}$	8 Lead SOIC
AD8063ART	-40 to $+85^{\circ} \mathrm{C}$	6 Lead SOT23-6

SPECIFICATIONS $\left(@ T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=+5,0, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{R}_{\mathrm{F}}=0 \Omega\right.$, Gain $=+1$, unless otherwise noted)

SPECIFICATIONS ($T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{S}}=+3 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{R}_{\mathrm{F}}=0 \Omega$, Gain =+1, unless otherwise noted)

SPECIFICATIONS $\left(@ T_{A}=+25^{\circ} \mathrm{C}, \mathrm{V}_{S}=+2.7 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k}, \mathrm{R}_{\mathrm{F}}=0 \Omega\right.$, Gain $=+1$, unless otherwise noted)

Parameter	Conditions	AD8061/62/63			Units
		Min	Typ	Max	
DYNAMIC PERFORMANCE					
-3 dB Bandwidth	$\mathrm{G}=+1, \mathrm{~V}_{\mathrm{o}}=0.2 \mathrm{Vp}-\mathrm{p}$		300		MHz
	$\mathrm{G}=-1,+2, \mathrm{~V}_{\mathrm{o}}=0.2 \mathrm{Vp}-\mathrm{p}$		115		MHz
	$\mathrm{G}=+1, \mathrm{~V}_{\mathrm{o}}=1 \mathrm{Vp}-\mathrm{p}$		TBD		MHz
Bandwidth for 0.1 dB Flatness	$\mathrm{V}_{\mathrm{o}}=0.2 \mathrm{Vp}-\mathrm{p}$,		30		MHz
Slew Rate	$\mathrm{G}=+1, \mathrm{~V}_{\mathrm{o}}=0.7 \mathrm{~V}$ Step , $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$		280		V/ $/ \mathrm{s}$
	$\mathrm{G}=+2, \mathrm{~V}_{\mathrm{o}}=1.5 \mathrm{~V}$ Step, $\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$		250		$\mathrm{V} / \mu \mathrm{s}$
Settling Time to 0.1\%	$\mathrm{G}=+2, \mathrm{~V}_{\mathrm{o}}=1 \mathrm{~V}$ Step		40		ns
NOISE/HARMONIC PERFORMANCE					
SFDR	$\mathrm{f}_{\mathrm{C}}=5 \mathrm{MHz}, \mathrm{V}_{\mathrm{o}}=1.0 \mathrm{~V}-\mathrm{p}, \mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$		TBD		dBc
	$\mathrm{f}_{\mathrm{C}}=20 \mathrm{MHz}, \mathrm{V}_{\mathrm{o}}=1.0 \mathrm{~V}$ p-p, $\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$		TBD		dBc
Crosstalk, Output to Output	$\mathrm{f}=5 \mathrm{MHz}, \mathrm{G}=+2$		-90		dBc
Input Voltage Noise	$\mathrm{f}=100 \mathrm{kHz}$		8.5		$\mathrm{nV} / \mathrm{NHz}$
Input Current Noise	$\mathrm{f}=100 \mathrm{kHz}$		1.2		$\mathrm{pA} / \sqrt{ } \mathrm{Hz}$
Differential Gain Error	NTSC, $\mathrm{G}=+2, \mathrm{R}_{\mathrm{L}}=150 \Omega$		0.3		\%
Differential Phase Error	NTSC, $\mathrm{G}=+2, \mathrm{R}_{\mathrm{L}}=150 \Omega$		0.4		Degree
Third Order Intercept	$\mathrm{f}=10 \mathrm{MHz}$		6.5		dBc
SFDR	$\mathrm{F}=5 \mathrm{MHz}$		-62		dBc
DC PERFORMANCE					
Input Offset Voltage	$\mathrm{T}_{\min }-\mathrm{T}_{\max }$		1	6	mV
			2		mV
Input Offset Voltage Drift			3.5		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
Input Bias Current			4	8.5	$\mu \mathrm{A}$
	$\mathrm{T}_{\min }-\mathrm{T}_{\mathrm{ma}}$		6	10	$\mu \mathrm{A}$
Input Offset Current Open Loop Gain			0.3		$\pm \mu \mathrm{A}$
					dB
	$\mathrm{V}_{\mathrm{o}}= \pm 2.5 \mathrm{~V}$		90		dB
INPUT CHARACTERISTICS					
Input Resistance			3		$\mathrm{M} \Omega$
Input Capacitance	+Input		1		pF
Input Common-Mode Voltage Range	$\mathrm{R}_{\mathrm{L}}=1 \mathrm{k} \Omega$. 3 to 3.2		V
Common-Mode Rejection Ratio	$\mathrm{V}_{\mathrm{CM}}=0.45$ to 1.55 V	62	70		dB
OUTPUT CHARACTERISTICS					
Output Voltage Swing	$\mathrm{R}_{\mathrm{L}}=150 \Omega$	0.3		2.55	
	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	0.25		2.6	V
Output Current	$\mathrm{V}_{\mathrm{o}}=+2.5 \mathrm{~V}$		30		mA
Capacitive Load Drive	30% over shoot		15		pF
POWER DOWN DISABLE					
Turn-on Time			TBD		ns
Turn-off Time			TBD		ns
Input Voltage - Disabled			TBD		V
Input Voltage - Enabled			TBD		V
POWER SUPPLY					
Operating Range		2.7	3	8	V
Quiescent Current per Amplifier			7.0	9.0	mA
Supply Current when Disabled			0.4		mA
Power Supply Rejection Ratio		72	-80		dB

