Preliminary Technical Data

FEATURES

Dual 12-bit 2-channel ADC
Fast Throughput Rate: 1MSPS
Specified for $V_{D D}$ of 2.7 V to 5.25 V
Low Power:
9mW Max at 1MSPS with 3V Supplies
30mW Max at 1MSPS with 5V Supplies Wide Input Bandwidth:

70dB SNR at 500kHz Input Frequency

Onboard Reference 2.5V

Flexible Power/Throughput Rate Management
Simultaneous Conversion/ Read
No Pipeline Delays
High Speed Serial Interface
Shut Down Mode: $\mathbf{1}_{\mu}$ A typ.
20-Pin TSSOP Package

GENERAL DESCRIPTION

The AD 7866 is a dual 12 -bit high speed, low power, suć ${ }^{\text {B2 }}$ cessive-approximation ADC. The part operates from a single 2.7 V to 5.25 V power supply and features throughput rates up to 1MSPS. Both devices contain two lownoise, wide bandwidth track/hold amplifiers which can handle input frequencies in excess of 1 MHz .
The conversion process and data acquisition are controlled using standard control inputs allowing easy interfacing to microprocessors or DSPs. The input signal is sampled on the falling edge of $\overline{\mathrm{CS}}$ and conversion is also initiated at this point. There are no pipelined delays associated with the part.
The AD 7866 uses advanced design techniques to achieve very low power dissipation at high throughput rates. With 3 V supplies and 1M SPS throughput rate, the part consumes approximately 3 mA . With 5 V supplies and 1M SPS, the current consumption is approximately 6 mA . The part also offers flexible power/throughput rate management when operating in sleep mode.

The analog input range for the part can be selected to be a 0 to $\mathrm{V}_{\text {REF }}$ input or a 0 to $2^{*} \mathrm{~V}_{\text {REF }}$ with either straight binary or $2 s$ complement output coding respectively. The AD 7866 has an on-chip +2.5 V reference which can be overdriven if an external reference is preferred. The conversion time is determined by the SCLK.
The AD7866 is available in a 20-pin thin shrink small outline (TSSOP) package.

PRODUCT HIGHLIGHTS

1. The AD7866 features two complete ADC func tions allowing simultaneous sampling and conversion of two channels. Each ADC has a 2-channel input mux. The conversion result of both channels is available si multaneously.
2.High Throughput with Low Power Consumption The AD 7866 offers a 1M SPS throughput rate with 10 mW power consumption when operating at 3 V .
3.Flexible Power/T hroughput Rate M anagement The conversion rate is determined by the serial clock allowing the power consumption to be reduced as the conversion time is reduced through a SCLK frequency increase. Power efficiency can be maximized at lower throughput rates if the part enters sleep during conver sions.
2. No Pipeline Delay.

The part features two standard successive-approximation ADCs with accurate control of the sampling instant via a $\overline{\mathrm{CS}}$ input and once off conversion control.

[^0] $T_{A}=T_{\text {MIN }}$ to $T_{\text {MAX, }}$ unless otherwise noted.)

Parameter	A Version ${ }^{1}$	Units	TestConditions/Comments
DYNAMIC PERFORMANCE Signal to (N oise +D istortion) Ratio ${ }^{2}$ Total Harmonic Distortion (THD) Peak Harmonic or Spurious N oise (SFDR) Intermodulation Distortion (IMD) Second Order Terms Third Order Terms Channel to Channel Isolation	$\begin{array}{r} 70 \\ -76 \\ -76 \\ \\ -76 \\ -76 \\ -80 \end{array}$	$d B \min$ dB max dB max dB typ dB typ db typ	$\begin{aligned} & f_{\text {IN }}=455 \mathrm{~K} \mathrm{~Hz} \text { Sine } W \text { ave, } f_{S}=1 \mathrm{M} \text { SPS } \\ & f_{\text {IN }}=455 \mathrm{~K} \mathrm{~Hz} \text { Sine Wave, } f_{S}=1 \mathrm{M} \text { SPS } \\ & f_{I N}=455 \mathrm{~K} \mathrm{~Hz} \text { Sine Wave, } f_{S}=1 \mathrm{M} \text { SPS } \end{aligned}$
SAMPLE AND HOLD Aperature Delay ${ }^{3}$ A perature Jitter ${ }^{3}$ Aperature D elay M atching ${ }^{3}$ Full Power Bandwidth	$\begin{aligned} & 20 \\ & 50 \\ & 100 \\ & 20 \end{aligned}$	ns max ps typ ps max MHz typ	
DC ACCURACY Resolution Integral Nonlinearity Differential Nonlinearity Offset Error Offset Error M atch Gain Error Gain Error Match	$\begin{gathered} 12 \\ \pm 1.5 \\ \pm 0.9 \\ \pm 5 \\ \pm 5 \\ \pm 2 \\ \pm 2 \end{gathered}$	Bits LSB max	Guaranteed No M issed Codes to 12 Bits.
ANALOG INPUT Input Voltage Ranges dc Leakage Current Input Capacitance	$\begin{aligned} & 0 \text { to } V_{\text {REF }} \\ & 0 \text { to } 2 V_{\text {REF }} \\ & \pm 1 \\ & \nu 0 \end{aligned}$	Volts Volts $\mu \mathrm{A} \max$ pF typ	RANGE pin tied low. RANGE pin tied high.
REFERENCE INPUT/OUTPUT REF IN Input Voltage Range dc Leakage Current Input Capacitance REF OUT Output Voltage REF OUT Error @ 25c REF OUT Error (Tmin to Tnax) REF OUT Temperature Coefficient REF OUT Output Impedance	$\begin{gathered} 2.5 \\ 2 / 3 \\ \pm 1 \\ 20 \\ 2.5 \\ \text { tbd } \\ \text { tbd } \\ 50 \\ \text { tbd } \end{gathered}$	V V min/V max $\mu \mathrm{A} \max$ pF typ V ppm/C	+/-1\% for Specified Performance REF SELECT pin tied high.
LOGIC INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, $\mathrm{V}_{\text {INL }}$ Input Current, $I_{\text {IN }}$ Input Capacitance, $\mathrm{C}_{1 \mathrm{~N}}{ }^{3}$	$\begin{aligned} & 2.8 \\ & 2.4 \\ & 0.4 \\ & \pm 1 \\ & 10 \end{aligned}$	$V \min$ V min V max $\mu \mathrm{A} \max$ pF max	$\begin{aligned} & V_{\text {DRIVE }}=5 \mathrm{~V} \\ & \mathrm{~V}_{\text {DRIVE }}=3 \mathrm{~V} \end{aligned}$ Typically $10 \mathrm{nA}, \mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {DRIVE }}$
LOGIC OUTPUTS Output High Voltage, V_{OH} Output Low Voltage, V_{OL} Floating-State Leakage Current Floating-State Output Capacitance Output Coding	$\begin{aligned} & \text { V DRIIE }-0.2 \\ & 0.4 \\ & \pm 10 \\ & 10 \end{aligned}$ Straight(N at 2 s Complem	V min V max $\mu \mathrm{A} \max$ pF max Binary	$\begin{aligned} & I_{\text {SOURCE }}=200 \mu \mathrm{~A} \\ & I_{\text {SINK }}=200 \mu \mathrm{~A} \\ & V_{D D}=2.7 \mathrm{~V} \text { to } 5.25 \mathrm{~V} \end{aligned}$ OV to $\mathrm{V}_{\text {ref }}$ Input Range 0 V to $2 \mathrm{~V}_{\text {ReF }}$ Input Range
CONVERSION RATE Conversion Time Track/H old Acquisition Time Throughput Rate	$\begin{gathered} 16 \\ 200 \\ 1 \end{gathered}$	SCLK cycles ns max MSPS max	```800ns with SCLK = 20M Hz Tconv + Tquiet```

Parameter	A Version ${ }^{1}$	Units	Test C onditions/Comments
POWER REQUIREMENTS			
$V_{\text {D }}$	+2.7/+5.25	$\checkmark \min / \max$	
$V_{\text {drive }}$	+2.7/+5.25	$\checkmark \mathrm{min} / \mathrm{max}$	
$\mathrm{I}_{\mathrm{DD}}{ }^{4}$			Digital I/Ps $=0 \mathrm{~V}$ or $\mathrm{DV}^{\text {DD }}$
Normal M ode	6	$m A \max$	$\mathrm{V}_{\mathrm{DD}}=4.75 \mathrm{~V}$ to $5.25 \mathrm{~V} . \mathrm{f}_{\mathrm{S}}=1 \mathrm{M}$ SPS
Normal M ode	3	$m A \max$	$\mathrm{V}_{\mathrm{DD}}=2.7 \mathrm{~V}$ to $3.3 \mathrm{~V} . \mathrm{f}_{\mathrm{S}}=1 \mathrm{M} \mathrm{SPS}$
Shutdown Mode	1	$\mu \mathrm{A} \max$	SCLK on or off. Digital I/Ps $=0 \mathrm{~V}$ or $\mathrm{V}_{\text {DRIVe }}$
Power Dissipation ${ }^{4}$			
Normal M ode	30	mW max	$V_{D D}=5 \mathrm{~V}$.
	9	mW max	$V_{D D}=3 V$
Shutdown Mode	5	uW max	$V_{D D}=5 \mathrm{~V}$. SCLK on or off.
	3	$\mu \mathrm{W}$ max	$V_{D D}=3 \mathrm{~V}$. SCLK on or off.

NOTES
${ }^{1} \mathrm{~T}$ emperature ranges as follows: A, B Versions: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
${ }^{2}$ SN R calculation includes distortion and noisecomponents.
${ }^{3}$ Sample tested @ $+25^{\circ} \mathrm{C}$ to ensure compliance.
${ }^{4}$ See POWER VERSUS THROUGHPUT RATE section.
Specifications subject to change without notice.

TMINGSPECIFICATIONS ${ }^{1}$

$\left(\mathrm{V}_{\mathrm{DD}}=+2.7 \mathrm{~V}\right.$ to +5.25 V, VREF $=2.5 \mathrm{~V} ; \mathrm{T}_{\mathrm{A}}=\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. $)$

Parameter	Limit at $\mathbf{T}_{\text {MIN }}, \mathbf{T}_{\text {MAX }}$ AD 7866	Units	Description
$\mathrm{f}_{\text {SCLK }}{ }^{2}$	10	kHz min	
	20	M Hz max	
$\mathrm{t}_{\text {CONVERT }}$	$16 *_{\text {SCLK }}$	ns max	$\mathrm{t}_{\text {SCLK }}=1 / \mathrm{f}_{\text {SCLK }}$
	800	ns max	$\mathrm{f}_{\text {SCLK }}=20 \mathrm{MHz}$
$\mathrm{t}_{\text {quie }}$	200	ns max	Minimum time between end of serial read and next falling edge of $\overline{C S}$
t_{2}	10	$n \mathrm{n}$ min	$\overline{\mathrm{CS}}$ to SCLK Setup Time
$t_{3}{ }^{3}$	tbd	ns max	Delay from $\overline{\mathrm{CS}}$ Until $\mathrm{D}_{\text {out }} \mathrm{A}$ and $\mathrm{D}_{\text {out }} \mathrm{B} 3$-State Disabled
$\mathrm{t}_{4}{ }^{3}$	10	ns max	Data Access Time After SCLK Falling Edge
t_{5}	$0.4 \mathrm{t}_{\text {SCLK }}$	$n \mathrm{mmin}$	SCLK Low Pulse Width
t_{6}	$0.4 \mathrm{t}_{\text {SCLK }}$	ns min	SCLK High Pulse Width
t_{7}	10	ns min	SCLK to Data Valid Hold Time
$\mathrm{t}_{8}{ }^{4}$	25	ns max	SCLK Falling Edge to $\mathrm{Dout}_{\text {O }} \mathrm{A}, \mathrm{D}_{\text {Out }} \mathrm{B}$, High Impedance
$\mathrm{t}_{\text {power-up }}$	tbd	μs typ	Power up time from Full Power-down

NOTES
${ }^{1}$ Sample tested at $+25^{\circ} \mathrm{C}$ to ensure compliance. All input signals are specified with $\mathrm{tr}=\mathrm{tf}=5 \mathrm{~ns}\left(10 \%\right.$ to 90% of V_{DD}) and timed from a voltage level of 1.6 Volts . See Figure 2.
${ }^{2} \mathrm{M}$ ark/Space ratio for the CLK input is $40 / 60$ to $60 / 40$.
${ }^{3} \mathrm{M}$ easured with the load circuit of F igure 1 and defined as the time required for the output to cross 0.8 V or 2.0 V .
${ }^{4} \mathrm{t}_{8}$ is derived form the measured time taken by the data outputs to change 0.5 V when loaded with the circuit of Figure 1 . T he measured number is then extrapolated back to remove the effects of charging or discharging the 50 pF capacitor. This means that the time, t_{8}, quoted in the timing characteristics are the true bus relinquish times of the part and are independent of the bus loading.
Specifications subject to change without notice.

Figure 1. Load Circuitfor Digital Output Timing Specifications

Preliminary Technical Data

NOTES
${ }^{1}$ Stresses above those listed under "Absolute M aximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.
${ }^{2}$ T ransient currents of up to 100 mA will not cause SCR latch up.

ORDERING GUIDE

Model	Range	Resolution (Bits)	Package Option	
	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	12	RU-20	
	Evaluation Board			
Controller Board				

NOTES

${ }^{1}$ RU $=T S S O P$.
${ }^{2}$ Thiscan beused asastand-aloneevaluation board or in conjunction with theEVAL-CONTROL BOARD for evaluation/demonstration purposes.
${ }^{3}$ T hisboard is completeunit allowing a PC to control and communicatewith all A nalog D evices evaluation boards ending in theC B designators.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD 7866 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance

PIN FUNCTION DESCRIPTION

TERMINOLOGY

Integral Nonlinearity

This is the maximum deviation from a straight line passing through the endpoints of the ADC transfer function. The endpoints of the transfer function are zero scale, a point $1 / 2$ LSB below the first code transition, and full scale, a point $1 / 2$ LSB above the last code transition.

Differential Nonlinearity

This is the difference between the measured and the ideal 1 LSB change between any two adjacent codes in the ADC.

Offset Error

This is the deviation of the first code transition (00 . . . 000) to (00 . . . 001) from the ideal, i.e AGND $+1 L S B$

Offset Error Match

This is the difference in Offset Error between the two channels.

Gain Error

This is the deviation of the last code transition (111
110) to (111 . . . 111) from the ideal (i.e., $\mathrm{V}_{\text {Ref }}-1$

LSB) after the offset error has been adjusted out.

Gain Error Match

This is the difference in Gain Error between the two channels.

Track/Hold Acquisition Time

The track/hold amplifier returns into track mode after the end of conversion. Track/H old acquisition time is the time required for the output of the track/hold amplifier to reach its final value, within $\pm 1 / 2$ LSB, after the end of conversion.

Signal to (Noise + Distortion) Ratio

This is the measured ratio of signal to (noise + distortion) at the output of the A/D converter. The signal is the rms amplitude of the fundamental. Noise is the sum of all nonfundamental signals up to half the sampling frequency ($\mathrm{f}_{\mathrm{s}} / 2$), excluding dc. The ratio is dependent on the number of quantization levels in the digitization process; the more levels, the smaller the quantization noise. The theoretical signal to (noise + distortion) ratio for an ideal N -bit converter with a sine wave input is given by:
Signal to (N oise + Distortion $)=(6.02 \mathrm{~N}+1.76) \mathrm{dB}$
Thus for a 12-bit converter, this is 74 dB and for a 10 bit converter is 62 dB .

Total Harmonic Distortion

Total harmonic distortion (THD) is the ratio of the rms sum of harmonics to the fundamental. For the AD7866, it is defined as:

$$
\operatorname{THD}(\mathrm{dB})=20 \log \frac{\sqrt{\mathrm{~V}_{2}^{2}+\mathrm{V}_{3}^{2}+\mathrm{V}_{4}^{2}+\mathrm{V}_{5}^{2}+\mathrm{V}_{6}^{2}}}{\mathrm{~V}_{1}}
$$

where V_{1} is the rms amplitude of the fundamental and V_{2}, V_{3}, V_{4}, V_{5} and V_{6} are the rms amplitudes of the second through the sixth harmonics.

Peak Harmonic or Spurious Noise

Peak harmonic or spurious noise is defined as the ratio of the rms value of the next largest component in the ADC output spectrum (up to $\mathrm{f}_{\mathrm{s}} / 2$ and excluding dc) to the rms value of the fundamental. Normally, the value of this specification is determined by the largest harmonic in the spectrum, but for ADCs where the harmonics are buried in the noise floor, it will be a noise peak.

Intermodulation Distortion

With inputs consisting of sine waves at two frequencies, fa and fb, any active device with nonlinearities will create distortion products at sum and difference frequencies of $\mathrm{mfa} \pm \mathrm{nfb}$ where $\mathrm{m}, \mathrm{n}=0,1,2,3$, etc. Intermodulation distortion terms are those for which neither m nor n are equal to zero. For example, the second order terms include ($\mathrm{fa} \mathrm{a}+\mathrm{fb}$) and ($\mathrm{fa}-\mathrm{fb}$), while the third order terms include $(2 f a+f b)$, $(2 f a-f b)$, $(f a+2 f b)$ and ($f a-2 f b)$.
The AD7866 is tested using the CCIF standard where two input frequencies near the top end of the input bandwidth are used. In this case, the second order terms are usually distanced in frequency from the original sine waves while the third order terms are usually at a frequency close to the input frequencies. As a result, the second and third order terms are specified separately. The calculation of the intermodulation distortion is as per the THD specification where it is the ratio of the rms sum of the individual distortion products to the rms amplitude of the sum of the fundamentals expressed in dBs .

PSR (Power Supply Rejection)

Variations in power supply will affect the full-scale transition, but not the conveter's linearity. Power Supply Rejection is the maximum change in the full-scale transition point due to a change in power-supply voltage from the nominal value.

MODES OF OPERATION

The mode of operation of the AD7866 is selected by controlling the (logic) state of the $\overline{\mathrm{CS}}$ signal during a conversion. There are three possible modes of operation, Normal Mode, Partial Power-Down Mode and Full Power-Down Mode. The point at which $\overline{\mathrm{CS}}$ is pulled high after the conversion has been initiated will determine which power-down mode, if any, that the device will enter. Similarly, if already in a power-down mode then $\overline{\mathrm{CS}}$ can control whether the device will return to Normal operation or remain in power-down. These modes of operation are designed to provide flexible power management options. These options can be chosen to optimize the power dissipation/throughput rate ratio for differing application requirements.

Normal Mode

This mode is intended for fastest throughput rate performance as the user does not have to worry about any power-up times with the AD 7866 remaining fully powered all the time. Figure 2 shows the general diagram of the operation of the AD7866 in this mode.
The conversion is iniated on the falling edge of $\overline{\mathrm{CS}}$ as described in the Serial Interface section. To ensure the part remains fully powered up at all times $\overline{\mathrm{CS}}$ must remain low until at least 10 SCLK falling edges have elapsed after
the falling edge of $\overline{\mathrm{CS}}$. If $\overline{\mathrm{CS}}$ is brought high any time after the 10th SCLK falling edge but before the 16th SCLK falling edge, the part will remain powered up but the conversion will be terminated and $D_{\text {out }} A$ and $D_{\text {out }} B$ will go back into tri-state. Sixteen serial clock cycles are required to complete the conversion and access the conversion result. The Dout line will not return to tri-state after 16 SCLK cycles have elapsed until CS is brought high again. If $\overline{C S}$ is left low for a further 16 SCLK cycles then the result from the other ADC on board will also be accessed on the same $D_{\text {out }}$ line as shown in figure 8 (see serial Interface Section). The STATUS bits provided prior to each conversion result will identify which ADC the following result will be from. Once 32 SCLK cycles have elapsed then the $\mathrm{D}_{\text {OUt }}$ line will return to tri-state on the 32nd SCLK falling edge. If CS is brought high prior to this then the Dout line will return to tri-state at that point. Hence, $\overline{\mathrm{CS}}$ may idle low after 32 SCLK cycles, until it is brought high again sometime prior to the next conversion, (effectively idling $\overline{\mathrm{CS}}$ low), if so desired, as the bus will still return to tri-state upon cmpleteion of the read.
Once a data transfer is complete and $\mathrm{D}_{\text {OUT }} \mathrm{A}$ and $\mathrm{D}_{\text {OUT }} \mathrm{B}$ have returned to tri-state, another conversion can be initiated after the quiet time, $\mathrm{t}_{\text {quiet }}$, has elapsed by bringing $\overline{\mathrm{CS}}$ low again.

Figure 2. Normal Mode Operation

Partial Power-Down Mode

This mode is intended for use in applications where slower throughput rates are required; either the ADC is powered down between each conversion, or a series of conversions may be performed at a high throughput rate and then the ADC is powered down for a relatively long duration between these bursts of several conversions. When the AD 7866 is in partial power down, all analog circuitry is powered down except for the on-chip reference and reference buffer.

To enter Partial Power-Down, the conversion process must be interrupted by bringing $\overline{\mathrm{CS}}$ high anywhere after the second falling edge of SCLK and before the tenth falling edge of SCLK as shown in Figure 3. Once $\overline{\mathrm{CS}}$ has been brought high in this window of SCLKs, then the part will enter partial power down and the conversion that was intiated by the falling edge of $\overline{\mathrm{CS}}$ will be terminated and Dout A and $D_{\text {out }} B$ will go back into tri-state. If $\overline{C S}$ is brought high before the second SCLK falling edge, then

Figure 3. Entering Partial Power Down Mode

Preliminary Technical Data

the part will remain in Normal Mode and will not powerdown. This will avoid accidental powerdown due to glitches on the $\overline{\mathrm{CS}}$ line.

In order to exit this mode of operation and power the AD 7866 up again, a dummy conversion is performed. On the falling edge of $\overline{\mathrm{CS}}$ the device will begin to power up, and will continue to power up as long as $\overline{\mathrm{CS}}$ is held low until after the falling edge of the tenth SCLK. The device will be fully powered up once 16 SCLKs have elapsed and valid data will result from the next conversion as shown in
figure 4. If $\overline{\mathrm{CS}}$ is brought high before the second falling edge of SCLK, then the AD 7866 will go back into partial power down again. This avoids accidental power up due to glitches on the $\overline{\mathrm{CS}}$ line, as although the device may begin to power up on the falling edge of $\overline{\mathrm{CS}}$, it will power down again on the rising edge of $\overline{\mathrm{CS}}$. If in Partial Power-Down and CS is brought high between the second and tenth falling edges of SCLK then the device will enter Full Power Down Mode.

Figure 4. Exiting Partial Power-Down Mode

Full Power-Down Mode

This mode is intended for use in applications where slower throughput rates are required than that in the Partial Power Down Mode, as power up from a full power down would not be complete in just one dummy conversion. This mode is more suited to applications where a series of conversions performed at a relatively high throughput rate would be followed by a long period of inactivity and hence power down. When the AD7866 is in full power down, all analog circuitry is powered down. See Power-up Times section.

Full Power-Down is entered in a similar way as partial power down except the timing sequence shown in Figure 3 must be executed twice.The conversion process must be interrupted in a similar fashion by bringing $\overline{\mathrm{CS}}$ high any-
where after the second falling edge of SCLK and before the tenth falling edge of SCLK. The device will enter partial power down at this point. To reach full power down, the next conversion cycle must be interrupted in the same way as shown in Figure 14. Once $\overline{\mathrm{CS}}$ has been brought high in this window of SCLKs, then the part will power down completely.

NOTE: It is not necessary to complete the 16 SCLKs once $\overline{\mathrm{CS}}$ has been brought high to enter a power down mode.
To exit Full Power Down, and power the AD 7866 up again, a dummy conversion is performed as when power-

Figure 5. Entering Full Power-Down Mode
ing up from partial power down. On the falling edge of $\overline{\mathrm{CS}}$ the device will begin to power up, and will continue to power up as long as $\overline{\mathrm{CS}}$ is held low until after the falling edge of the tenth SCLK. The power up time is longer than one dummy conversion cycle however and this time
must elapse before a conversion can be initaited as shown in Figure 6. See Power-up Times section for the power up times associated with the AD 7866.

Figure 6. Exiting Full Power-Down Mode

SERIAL INTERFACE

Figure 7 shows the detailed timing diagram for serial interfacing to the AD 7866. The serial clock provides the conversion clock and also controls the transfer of information from the AD 7866 during conversion.
The $\overline{\mathrm{CS}}$ signal initiates the data transfer and conversion process. The falling edge of $\overline{\mathrm{CS}}$ puts the track and hold into hold mode, takes the bus out of tristate and the analog input is sampled at this point. The conversion is also initiated at this point and will require 16 SCLK cycles to complete. Once 13 SCLK falling edges have elapsed, then the track and hold will go back into track on the next SCLK rising edge as shown in figure 7 at point B. On the rising edge of $\overline{\mathrm{CS}}$, the conversion will be terminated and DoutA and DoutB will go back into tri-state. If CS is not brought high but instead held low for a further sixteen SCLK cycles on $\mathrm{D}_{\text {out }} \mathrm{A}$ then the data from conversion B will be output on DoutA. Likewise if CS is held low for a
further sixteen SCLK cycles on $D_{\text {OUT }} B$ then the data from conversion A will be output on $D_{\text {out }} \mathrm{B}$. This is illustrated in figure 8 where the case for $\mathrm{D}_{\text {out }} \mathrm{A}$ is shown. Sixteen serial clock cycles are required to perform the conversion process and to access data from one conversion on either data line of the AD7866. $\overline{\mathrm{CS}}$ going low provides the leading zero to be read in by the microcontroller or DSP. The remaining data is then clocked out by subsequent SCLK falling edges beginning with the first of three data STATUS bits, thus the first falling clock edge on the serial clock has the leading zero provided and also clocks out the first of three STATUS bits. The final bit in the data transfer is valid on the sixteenth falling edge, having being clocked out on the previous (15th) falling edge. In applications with a slower SCLK, it is possible to read in data on each SCLK rising edge, i.e. the first rising edge of SCLK after the $\overline{\mathrm{CS}}$ falling edge would have the leading zero provided and the 15th rising SCLK edge would have DBO provided.

Figure 7. AD7866 Serial Interface Timing Diagram

Preliminary Technical Data

The three STATUS bits which follow the leading zero provide information with respect to the conversion result which follows them on the $\mathrm{D}_{\text {out }}$ line in use. Table I shows how these identification bits can be interpreted.

STATUS BIT DESCRIPTION

Bit	Mnemonic	Comment
15	ZERO	Leading Zero. T his bit will always be a zero output.
14	RANGE	The polarity of this bit reflects the analog input range that has been selected with the RANGE pin. If it is a 0 then it means the analog input range is from $O V$ to $V_{\text {REF }}$ and the output coding is straight binary. If it is a 1 then the analog input range selected is from 0 V to $2 \mathrm{~V}_{\text {REF }}$ and the output coding is 2's Complement.
13	A0/ $\overline{\mathrm{A} 0}$	This bit indicates which channel the conversion is being performed on, channel 1 or channel 2 of the ADC in question. If this bit is a 0 then the conversion result will be from channel 1 of the $A D C$, and if it is a 1 then the result will be from channel 2 of the $A D C$ in question.
12	A/B	This bit indicates which ADC the conversion result is from. If this bit is a 0 then the result is from ADC A, and if it is a 1 then the result if from ADC. This is especially useful if only one serial port is available for use and one $D_{\text {OUT }}$ line is used, as shown in figure 8.

Figure 8. Reading data from both $A D C s$ on one $D_{\text {OUT }}$ line

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

20-Lead Tiny Shrink Small Outline Package
 (RU-20)

[^0]: One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 781/329-4700

 World Wide Web Site: http://www.analog.com Fax: 781/326-8703

 Analog Devices, Inc., 1998

