CMOS 12-Bit Buffered Multiplying DAC

FEATURES
12-Bit Resolution
Low Gain TC: $2 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$ typ
Fast TTL Compatible Data Latches
Single +5 V to +15 V Supply
Small 20-Lead 0.3" DIP and 20-Terminal Surface Mount Packages
Latch Free (Schottky Protection Diode Not Required)
Low Cost
Ideal for Battery Operated Equipment

## GENERAL DESCRIPTION

The AD7545 is a monolithic 12-bit CMOS multiplying DAC with onboard data latches. It is loaded by a single 12 -bit wide word and directly interfaces to most 12 - and 16 -bit bus systems. Data is loaded into the input latches under the control of the $\overline{\mathrm{CS}}$ and $\overline{\mathrm{WR}}$ inputs; tying these control inputs low makes the input latches transparent, allowing direct unbuffered operation of the DAC.

FUNCTIONAL BLOCK DIAGRAM


The AD7545 is particularly suitable for single supply operation and applications with wide temperature variations.

The AD7545 can be used with any supply voltage from +5 V to +15 V . With CMOS logic levels at the inputs the device dissipates less than 0.5 mW for $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$.

## PIN CONFIGURATIONS



REV. A

[^0]One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A. Tel: 617/329-4700 World Wide Web Site: http://www.analog.com Fax: 617/326-8703



## NOTES

[^1]

Write Cycle Timing Diagram

## ABSOLUTE MAXIMUM RATINGS*

$\left(\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}\right.$ unless otherwise noted)
VDD to DGND . . . . . . . . . . . . . . . . . . . . . . . . . . $-0.3,+17$ V
Digital Input Voltage to DGND ........ -0.3 V, V
$\mathrm{V}_{\text {RFB }}, \mathrm{V}_{\text {REF }}$ to DGND . . . . . . . . . . . . . . . . . . . . . . . . $\pm 25 \mathrm{~V}$
$\mathrm{V}_{\text {PIN } 1}$ to DGND . . . . . . . . . . . . . . . . . . . $-0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
AGND to DGND . . . . . . . . . . . . . . . . $-0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{DD}}+0.3 \mathrm{~V}$
Power Dissipation (Any Package) to $+75^{\circ} \mathrm{C}$. . . . . . 450 mW
Derates above $+75^{\circ} \mathrm{C}$. . . . . . . . . . . . . . . . . . . . . . $6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$
Operating Temperature

| WRITE MODE: | HOLD MODE: |
| :---: | :---: |
| CS AND WR LOW, DAC RESPONDS TO DATA BUS (DB0-DB11) INPUTS. | EITHER CS OR WR HIGH, DATA BUS (DB0-DB11) IS LOCKED OUT; DAC HOLDS LAST DATA PRESENT WHEN $\overline{\text { WR OR CS }}$ ASSUMED HIGH STATE. |
| NOTES: | TIMES MEASURED FROM 10\% TO <br> E LEVEL IS $\mathrm{v}_{\mathrm{H}}+\mathrm{V}_{\mathrm{IL}} / 2$. |

Commercial (J, K, L, GL) Grades . . . . . . . . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ Industrial (A, B, C, GC) Grades . . . . . . . $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ Extended (S, T, U, GU) Grades . . . . . . . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Storage Temperature . . . . . . . . . . . . . . . . . $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ Lead Temperature (Soldering, 10 secs) . . . . . . . . . . $+300^{\circ} \mathrm{C}$
*Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

## CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the AD7545 features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.


## TERMINOLOGY

## RELATIVE ACCURACY

The amount by which the D/A converter transfer function differs from the ideal transfer function after the zero and fullscale points have been adjusted. This is an endpoint linearity measurement.

## DIFFERENTIAL NONLINEARITY

The difference between the measured change and the ideal change between any two adjacent codes. If a device has a differential nonlinearity of less than 1 LSB it will be monotonic, i.e., the output will always increase for an increase in digital code applied to the $\mathrm{D} / \mathrm{A}$ converter.

## PROPAGATION DELAY

This is a measure of the internal delay of the circuit and is measured from the time a digital input changes to the point at which the analog output at OUT1 reaches $90 \%$ of its final value.

## DIGITAL-TO-ANALOG GLITCH IMPULSE

This is a measure of the amount of charge injected from the digital inputs to the analog outputs when the inputs change state. It is usually specified as the area of the glitch in nV secs and is measured with $\mathrm{V}_{\text {REF }}=A G N D$ and an ADLH0032CG as the output op amp, C1 (phase compensation) $=33 \mathrm{pF}$.

ORDERING GUIDE ${ }^{1}$

| Model ${ }^{2}$ | Temperature Range | Relative <br> Accuracy | Maximum Gain Error $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ $\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V}$ | Package Options ${ }^{3}$ |
| :---: | :---: | :---: | :---: | :---: |
| AD7545JN | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | $\pm 2$ LSB | $\pm 20$ LSB | $\mathrm{N}-20$ |
| AD7545AQ | $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | $\pm 2$ LSB | $\pm 20$ LSB | Q-20 |
| AD7545SQ | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | $\pm 2$ LSB | $\pm 20$ LSB | Q-20 |
| AD7545KN | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | $\pm 1$ LSB | $\pm 10$ LSB | N-20 |
| AD7545BQ | $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | $\pm 1$ LSB | $\pm 10$ LSB | Q-20 |
| AD7545TQ | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | $\pm 1$ LSB | $\pm 10$ LSB | Q-20 |
| AD7545LN | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | $\pm 1 / 2$ LSB | $\pm 5$ LSB | N-20 |
| AD7545CQ | $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | $\pm 1 / 2$ LSB | $\pm 5$ LSB | Q-20 |
| AD7545UQ | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | $\pm 1 / 2$ LSB | $\pm 5$ LSB | Q-20 |
| AD7545GLN | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | $\pm 1 / 2$ LSB | $\pm 1$ LSB | N-20 |
| AD7545GCQ | $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ | $\pm 1 / 2$ LSB | $\pm 1$ LSB | Q-20 |
| AD7545GUQ | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | $\pm 1 / 2$ LSB | $\pm 1$ LSB | Q-20 |
| AD7545JP | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | $\pm 2$ LSB | $\pm 20$ LSB | P-20A |
| AD7545SE | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | $\pm 2$ LSB | $\pm 20$ LSB | E-20A |
| AD7545KP | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | $\pm 1$ LSB | $\pm 10$ LSB | P-20A |
| AD7545TE | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | $\pm 1$ LSB | $\pm 10$ LSB | E-20A |
| AD7545LP | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | $\pm 1 / 2$ LSB | $\pm 5$ LSB | P-20A |
| AD7545UE | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | $\pm 1 / 2$ LSB | $\pm 5$ LSB | E-20A |
| AD7545GLP | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ | $\pm 1 / 2$ LSB | $\pm 1$ LSB | P-20A |
| AD7545GUE | $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | $\pm 1 / 2$ LSB | $\pm 1$ LSB | E-20A |

## NOTES

${ }^{1}$ Analog Devices reserves the right to ship either ceramic (D-20) in lieu of cerdip packages ( $\mathrm{Q}-20$ ).
${ }^{2}$ To order MIL-STD-883, Class B process parts, add /883B to part number Contact local sales office for military data sheet. For U.S. Standard Military DRAWING (SMD) see DESC drawing 5962-87702.
${ }^{3} \mathrm{E}=$ Leadless Ceramic Chip Carrier; $\mathrm{N}=$ Plastic DIP; P = Plastic Leaded Chip Carrier; Q = Cerdip.


[^0]:    Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

[^1]:    ${ }^{1}$ Temperature range as follows: J, K, L, GL versions, $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C} ; \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{GC}$ versions, $-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C} ; \mathrm{S}, \mathrm{T}, \mathrm{U}$ GU versions, $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.
    ${ }^{2}$ This includes the effect of 5 ppm max gain TC.
    ${ }^{3}$ Guaranteed but not tested.
    ${ }^{4} \mathrm{DB} 0-\mathrm{DB} 11=0 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}$ or $\mathrm{V}_{\mathrm{DD}}$ to 0 V .
    ${ }^{5}$ Feedthrough can be further reduced by connecting the metal lid on the ceramic package (Suffix D) to DGND.
    ${ }^{6}$ Logic inputs are MOS gates. Typical input current $\left(+25^{\circ} \mathrm{C}\right)$ is less than 1 nA .
    ${ }^{7}$ Sample tested at $+25^{\circ} \mathrm{C}$ to ensure compliance.
    Specifications subject to change without notice.

