

FEATURES

16-bit Resolution 2mA Full Scale Current ± 20%, with V_{RFF}=10V

2µs Settling Time

V_{SS} BIAS for reduced Zero Scale Error @Temp

Midscale (MSB) or Zero Scale Reset 4 Separate 4Q Multiplying Reference-inputs SPI Compatible 3-Wire Interface Double Buffered Registers Enable Simultaneous All Channel Change Internal Power ON Reset

Compact SSOP-28 Package

APPLICATIONS Automatic Test Equipment Instrumentation Digitally Controlled Calibration

GENERAL DESCRIPTION

The AD5544 quad, 16-bit, a current-output, digital-to-analog converter is designed to operate from a single +5 volt supply.

The applied external reference input voltage VREF determines the full-scale output-current. On board feedback resistors (R_{FB}) provide temperature-tracking full-scale voltage outputs when combined with an external I to V precision amplifier.

A doubled-buffered serial-data interface offers high-speed, three-wire, SPI and micro controller compatible inputs using serial-data-in (SDI), clock (CLK), and a chip-select (\overline{CS}). In addition a serial-data-out pin (SDO) allows for daisy chaining when multiple packages are used. A common level-sensitive load-DAC strobe (\overline{LDAC}) input allows simultaneous update of all DAC outputs from previously loaded Input Registers. Additionally, an internal power ON reset forces the output voltage to zero at system turn ON. An MSB pin allows system reset assertion (\overline{RS}) to force all registers to zero code when MSB=0, or to half-scale code when MSB=1.

The AD5544 is packaged in the compact SSOP-28.

ORD	DERING	GUIDE

	INL	DNL	TEMP	Package	Package
MODEL	(LSB)	(LSB)	RANGE	Description	Option
AD5544JRS AD5544ARS	±4 ±4	±1.5 ±1.5	0 / +70°C -40 / +85°C	SSOP-28 SSOP-28	RS-28 RS-28

The AD5544 contains 4196 transistors. The die size measures 122 mil X 204 mil.

FUNCTIONAL DIAGRAM

Quad, Current-Output

AD5544

Serial-Input, 16-Bit DAC

REV. PrE, Nov '99

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

AD5544

ELECTRICAL CHARACTERISTICS at VDD = 5V±10%, VSS = 0V, IOUTX = Virtual GND, AGNDX=0V, VREFA, B, C, D = 10V, TA = Full Operating

temperature Range, unless otherwise noted.

PARAMETER	SYMBOL	CONDITION	5V±10%	UNITS
STATIC PERFORMANCE¹				
Resolution	Ν	$1 \text{ LSB} = V_{\text{REF}}/2^{16} = 153 \mu \text{V}$ when $V_{\text{REF}} = 10 \text{V}$	16	Bits
Relative Accuracy	INL		±4	LSB max
Differential Nonlinearity	DNL		±1.5	LSB max
Output Leakage Current	I _{OUT} X	$Data = 0000_{\rm H}, T_{\rm A} = 25^{\circ}{\rm C}$	10	nA max
Output Leakage Current	I _{OUT} X	$Data = 0000_{\rm H}, T_{\rm A} = T_{\rm A} MAX$	50	nA max
Full-Scale Gain Error	G _{FSE}	$T_A = 25^{\circ}C$, Data = FFFF _H	±2/±10	mV typ/max
Full-Scale Gain Error	G _{FSE}	T_{A-MAX} , Data = FFFF _H , V _{SS} = -300mV	±10	mV max
Full-Scale Gain Error	G _{FSE}	$T_A = T_{A-MIN}$, Data = FFFF _H	±50	mV max
Full-Scale Tempco ²	TCV _{FS}		1	ppm/°C typ
REFERENCE INPUT				
V _{REF} X Range	V _{REF} X		-15/+15	V min/max
Input Resistance	R _{REF} X		5	k ohm typ ⁴
Input Resistance Match	R _{REF} X	Channel-to-Channel	1	% typ ⁴
Input Capacitance ²	CREFX		5	pF typ
ANALOG OUTPUT		2		
Output Current	I _{OUT} X	$Data = FFFF_{H}$	2	mA typ
Output Capacitance ²	C _{OUT} X	Code Dependent	200	pF typ
LOGIC INPUTS & OUTPUT	Г	101		
Logic Input Low Voltage	V_{IL}		0.8	V max
Logic Input High Voltage	V_{IH}		2.4	V min
Input Leakage Current	I _{IL}	SCI. MO	10	µA max
Input Capacitance ²	C _{IL}	E- IN.	10	pF max
Logic Output Low Voltage	V _{OL}	I _{OL} =1.6mA	0.4	V max
Logic Output High Voltage	V _{OH}	I _{OH} =100µA	4	V min
INTERFACE TIMING ^{2,3}				
Clock Width High	t _{CH}	Ir or	30	ns min
Clock Width Low	t _{CL}	i V	30	ns min
CS to Clock Set Up	t _{CSS}		0	ns min
Clock to CS Hold	t _{CSH}		25	ns min
Clock to SDO Prop Delay	t _{PD}		2/20	ns min/max
Load DAC Pulse Width	t _{LDAC}		20	ns min
Data Setup	t _{DS}		10	ns min
Data Hold	t _{DH}		15	ns min
Load Setup	t _{LDS}		20	ns min
Load Hold	t _{LDH}		20	ns min
SUPPLY CHARACTERIST	ICS			
Power Supply Range	V _{DD RANGE}		4.5/5.5	V min/max
Positive Supply Current	I _{DD}	Logic Inputs $= 0V$	100	µA max
Negative Supply Current	Iss	Logic Inputs $= 0V$	0.001/1	µA typ/max
Power Dissipation	P _{DISS}	Logic Inputs = $0V$	0.3	mW max
Power Supply Sensitivity	PSS	$\Delta V_{DD} = +5\%$	0.006	%/% max
	- ~~		0.000	, , , , , , , , , , , , , , , , , , ,

NOTES:

 All static performance tests (except I_{OUT}) are performed in a closed loop system using an external precision OP177 I-to-V converter amplifier. The AD5544 R_{FB} terminal is tied to the amplifier output. Typical values represent average readings measured at 25°C

2. These parameters are guaranteed by design and not subject to production testing.

3. All input control signals are specified with $t_R = t_F = 2.5$ ns (10% to 90% of +3V) and timed from a voltage level of 1.5V.

4. All AC Characteristic tests are performed in a closed loop system using an OP42 I-to-V converter amplifier.

ELECTRICAL CHARACTERISTICS at VDD = 5V±10%, VSS = -300mV, IOUTX = Virtual GND, AGNDX=0V, VREFA, B, C, D = 10V,

T_A = Full Operating Temperature Range, unless otherwise noted.

PARAMETER	SYMBOL	CONDITION	5V±10%	UNITS
AC CHARACTERISTICS				
Output Voltage Settling Time	ts	To $\pm 0.1\%$ of Full Scale, Data = 0000_{H} to FFFF_{H} to 0000_{H}	2	µs typ
Reference Multiplying BW	BW-3dB	$V_{REF}X=100mVrms$, Data = FFFF _H , $C_{FB} = 15pF$	2	MHz
DAC Glitch Impulse	Q	$V_{REF}X = 0V$, Data 0000_{H} to 8000_{H} to 0000_{H}	45	nV-s typ
Feed Through Error	V _{OUT} X/V _{REF} X	$Data = 0000_H$, $V_{REF}X = 100mVrms$, $f = 10KHz$	-68	dB
Crosstalk Error	V _{OUT} A/V _{REF} B	$Data = 0000_{H}, V_{REF}B = 100 mVrms$, adjacent channel	-70	dB
Digital Feed Through	Q	$CS = 1$, and $f_{CLK} = 1MHz$	5	nV-s typ
Total Harmonic Distortion	THD	$V_{REF} = 5V_{P-P}$, Data = FFFF _H , f=1KHz	-73	dB typ
Output Spot Noise Voltage	e _N	f = 1kHz, BW = 1Hz		nV/ rt Hz

NOTES:

All static performance tests (except I_{OUT}) are performed in a closed loop system using an external precision OP177 I-to-V converter amplifier. The AD5544 R_{FB} terminal is tied to 1. the amplifier output. Typical values represent average readings measured at 25°C

2.

These parameters are guaranteed by design and not subject to production testing. All input control signals are specified with $t_{\rm R} = t_{\rm F} = 2.5$ mm (10% to 90% of +3V) and timed from a voltage level of 1.5V. 3.

4. All AC Characteristic tests are performed in a closed loop system using an OP42 I-to-V converter amplifier.

ABSOLUTE MAXIMUM RATINGS

V_{DD} to GND 0.3V, +8V	
V _{SS} to GND0.3V, -7V	
V_{REF} to GND18V, 18V	6
Logic Inputs & Output to GND0.3V, +8V	
$V(I_{OUT})$ to GND0.3V, V_{DD} + 0.3V	10
$A_{GND}X$ to $DGND$ $-0.3V, +0.3V$	1.1
Input Current to Any Pin except Supplies±50mA	6
Package Power Dissipation $(T_J MAX - T_A)/THETA_{JA}$	
Thermal Resistance THETA _{JA}	10
28-lead Shrink Surface Mount (RS-28)100°C/W	1
Maximum Junction Temperature (T _J MAX) 150°C	
Operating Temperature Range	
Models A, B, C40°C to +85°C	1
Models J, K, L 0°C to +70°C	
Storage Temperature Range65°C to +150°C	
Lead Temperature:	
R-28 (Vapor Phase, 60 secs)+215°C	
RS-28 (Infrared, 15 secs)+220°C	

Stress above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

PIN CONFIGURATION

Ac	INDA 1	28 A _{GND} D
	DUTA 2	27 I _{оит} D
V	REFA 3	26 V _{REF} D
F	R _{FB} A 4	25 R _{FB} D
Ν	ISB 5	24 DGND
1 ~	RS 6	23 V _{ss}
K K	V _{DD} 7	22 A _{GND} F
1.	CS 8	21 LDAC
	CLK 9	20 SDO
	SDI 10	19 NC
F	а _{ғв} в 11	18 R _{FB} C
V	REFB 12	17 V _{REF} C
la	ылВ 13	16 I _{out} C
A	INDB 14	15 A _{GND} C

D5544

AD5544

Figure 2. Timing Diagram

Table 1. Control-Logic Truth Table											
CS	CLK	LDAC	RS	MSB	Serial Shift Register Function	Input Register Function	DAC Register				
Н	Х	Н	Н	Х	No Effect	Latched	Latched				
L	L	Н	Н	Х	No Effect	Latched	Latched				
L	\uparrow_+	Н	Н	Х	Shift-Register-Data advanced one bit	Latched	Latched				
L	Н	Н	Η	Х	No Effect	Latched	Latched				
\uparrow_+	L	Η	Н	х	No Effect	Selected DAC Updated	Latched				
					I JUU AI	with current SR contents					
Н	Х	L	Η	Х	No Effect	Latched	Transparent				
Н	Х	Н	Η	Х	No Effect	Latched	Latched				
Н	Х	\uparrow_+	Н	Х	No Effect	Latched	Latched				
Н	Х	Н	L	0	No Effect	Latched Data = 0000_{H}	Latched Data = $0000_{\rm H}$				
Н	Х	Н	L	Н	No Effect	Latched Data = $8000_{\rm H}$	Latched Data = $8000_{\rm H}$				

Notes:

1. SR = Shift Register

2. \uparrow + positive logic transition; X Don't Care

3. At power ON both the Input Register and the DAC Register are loaded with all zeros.

4. Data appears at the SDO pin 19 clock pulses after input at the SDI pin.

Table 2. AD5544 Serial Input Register Data Format, Data is loaded in the MSB-First Format.

	MSE	}																LSB
Bit Position	B17	B16	B15	B14	B13	B12	B11	B10	B9	B8	B7	B6	B5	B4	B3	B2	B1	B0
Data Word	A1	A0	D15	D14	D13	D12	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0

Note: Only the last 18 bits of data clocked into the serial register (Address + Data) are inspected when the CS line s positive edge returns to logic high. At this point an internally generated load strobe transfers the serial register data contents (bits D15-D0) to the decoded DAC-Input-Register address determined by bits A1 and A0. Any extra bits clocked into the AD5544 shift register are ignored, only the last 18 bits clocked in are used. If double buffered data is not needed, the LDAC pin can be tied logic low to disable the DAC Registers.

Table 3. Address Decode:

<u>A1</u>	<u>A0</u>	DAC Decoded
0	0	DAC A
0	1	DAC B
1	0	DAC C
1	1	DAC D

PIN DESCRIPTION

PIN#	Name	Function
1	AGNDA	DAC A analog ground.
2	IOUTA	DAC A current output.
3	V _{REF} A	DAC A Reference voltage input terminal.
		Establishes DAC A Full-Scale output voltage.
		Pin can be tied to V _{DD} pin.
4	R _{FB} A	DAC A voltage output connection to external
		amplifier.
5	MSB	MSB bit set pin during a reset pulse (RS) or at
		system power ON if tied to ground or V _{DD} .
6	RS	Reset pin, active low input. Input registers
		and DAC registers are set to all zeros or half-
		scale code $(8000_{\rm H})$ determined by the voltage
		on the MSB pin. Register $Data = 0000_{H}$ when
		$MSB = 0$, Register Data = 8000_{H} when MSB
		= 1.
7	V_{DD}	Positive power supply input. Specified range
		of operation $+5V\pm10\%$.
8	CS	Chip Select, active low input. Disables shift
		register loading when high. Transfers Serial
		Register Data to the Input Register when
		CS/LD returns High. Does not effect LDAC
		operation.
9	CLK	Clock input, positive edge clocks data into
		shift register.
10	SDI	Serial Data Input, input data loads directly
		into the shift register.
11	R _{FB} B	DAC B voltage output connection to external
		amplifier.
12	V _{REF} B	DAC B Reference voltage input terminal.
		Establishes DAC B Full-Scale output voltage.
		Pin can be tied to V _{DD} pin.

CIRCUIT OPERATION

The AD5544 contains four, 16-bit, current-output, digital-toanalog converters. Each DAC has its own independent multiplying reference input. The AD5544 uses a 3-wire SPI compatible serial data interface, with a configurable asynchronous **RS** pin for half-scale (MSB=1) or zero-scale (MSB=0) preset. In addition, a **LDAC** strobe enables four channel simultaneous updates for hardware synchronized output voltage changes.

D/A Converter Section

Each part contains four current-steering R-2R ladder DACs. Figure 3 shows a typical equivalent DAC. Each DAC contains a matching feedback resistor for use with an external I to V converter amplifier. The $R_{FB}X$ pin is connected to the output of the external amplifier. The $I_{OUT}X$ terminal is connected to the inverting input of the external amplifier. The $A_{GND}X$ pin should be Kelvin connected to the load point in the circuit requiring the full 16-bit accuracy. These DACs are designed to operate with both negative or positive reference voltages. The V_{DD} power pin is only used by the logic to drive the DAC switches ON and OFF. Note that a matching switch is used in series with the internal 5K-ohm feedback resistor. If users are attempting to measure the value of R_{FB} , power must be applied to V_{DD} in order to achieve continuity. An additional V_{SS} bias pin is used to guard the substrate during high temperature

13	IOUTB	DAC B current output.
14	AGNDB	DAC B analog ground.
15	AGNDC	DAC C analog ground.
16	IOUTC	DAC C current output.
17	V _{REF} C	DAC C Reference voltage input terminal.
		Establishes DAC C Full-Scale output voltage.
		Pin can be tied to V _{DD} pin.
18	$R_{FB}C$	DAC C voltage output connection to external
10	NG	amplifier.
19	NC	No Connect. Leave pin unconnected.
20	SDO	Serial Data Output, input data loads directly
		into the shift register. Data appears at SDO,
		19 clock pulses after input at the SDI pin.
21	LDAC	Load DAC Register strobe, level sensitive
		active low. Transfers all Input Register data to
		DAC registers. Asynchronous active low
		input. See Control Logic Truth Table for
		operation.
22	A _{GND} F	High current analog force ground.
23	Vss	Negative Bias power supply input. Specified
		range of operation -0.3 to -5.5V.
24	DGND	Digital Ground Pin.
25	R _{FB} D	DAC D voltage output connection to external
		amplifier.
26	V _{REF} D	DAC D Reference voltage input terminal.
	× .	Establishes DAC D Full-Scale output voltage.
1		Pin can be tied to V _{DD} pin.
27	I _{OUT} D	DAC D current output.
28	A _{GND} D	DAC D analog ground.

applications to minimize zero scale leakage currents that double every 10°C. The V_{REF} input voltage and the digital data (D) loaded into the corresponding DAC register according to equation [1] determine the DAC output voltage:

$$V_{OUT} = -V_{REF} * D / 65,536$$

Equation 1

Note that the output full-scale polarity is opposite to the V_{REF} polarity for DC reference voltages.

Figure 3. Typical Equivalent DAC Channel

These DACs are also designed to accommodate AC reference input signals. The AD5544 will accommodate input reference voltages in the range of -12 to +12 volts. The reference voltage

inputs exhibit a constant nominal input-resistance value of 5K ohms, ±30%. The DAC outputs IOUTA,B,C,D are codedependent producing various output resistances and capacitances. External amplifier choice should take into account the variation in impedance generated by the AD5544 on the amplifiers inverting input node. The feedback resistance in parallel with the DAC ladder resistance dominates output voltage noise. For multiplying mode applications an external feedback compensation capacitor CFB may be needed to provide a critically damped output response for step changes in reference input voltages. Figure M shows the gain Vs frequency performance at various attenuation settings using an 15pF external feedback capacitor connected across the IOUTX and R_{FB}X terminals. In order to maintain good analog performance, power supply bypassing of 0.01uF in parallel with 1uF is recommended. Under these conditions clean power supply voltages (low ripple, avoid switching supplies) appropriate for the application should be used. It is best to derive the AD5544's +5V supply from the systems analog supply voltages. (Don't use the digital 5V supply). See figure 4.

Figure M. Reference Multiplying Bandwidth Vs Code

Figure 4. Recommended Kelvin Sensed hookup

Figure 5. System Level Digital Interfacing

SERIAL DATA INTERFACE

The AD5544 uses a 3-wire (\overline{CS} , SDI, CLK) SPI compatible serial data interface. New serial data is clocked into the serial input register in a 18-bit data-word format. MSB bits are loaded first. Table 2 defines the 18 data-word bits. Data is placed on the SDI pin, and clocked into the register on the positive clock edge of CLK subject to the data setup and data hold time requirements specified in the INTERFACE TIMING SPECIFICATIONS. Data can only be clocked in while the CS chip select pin is active low. Only the last 18-bits clocked into the serial register will be interrogated when the CS pin returns to the logic high state, extra data bits are ignored. Since most micro controllers' output serial data in 8-bit bytes, three right justified data bytes can be written to the AD5544. Keeping the \overline{CS} line low between the first, second, and third byte transfer will result in a successful serial register update.

Once the data is properly aligned in the shift register the positive edge of the \overline{CS} initiates either the transfer of new data to the target DAC register determined by the decoding of address bits A1 & A0. Table 1, 2, 3 and Figure 2 defines the remaining characteristics of the software serial interface.

Figures 5 & 6 show the equivalent logic interface for the key digital control pins.

AD5544

Two additional pins \overline{RS} and MSB provide hardware control over the preset function and DAC Register loading. If these functions are not needed, the \overline{RS} pin can be tied to logic high. The asynchronous input \overline{RS} pin forces all input and DAC registers to either the zero-code state (MSB=0), or the halfscale state (MSB=1).

Figure 6. Equivalent Logic Interface

POWER ON RESET

When the V_{DD} power supply is turned ON an internal reset strobe forces all the Input and DAC registers to the zero-code

state, or half-scale depending on the MSB pin voltage. The V_{DD} power supply should have a monotonically increasing ramp in order to have consistent results, especially in the region of V_{DD} = 1.5V to 2.3V. The V_{SS} supply has no effect on the power ON reset performance. The DAC register data will stay at zero, or half-scale setting until a valid serial register software load takes place.

ESD Protection Circuits

All logic-input pins contain back-biased ESD protection Zeners connected to ground (DGND) and V_{DD} as shown in figure 7.

Figure 7. Equivalent ESD Protection Circuits

PC LAYOUT

Recommended PCB layout is shown in figure N. Amplifiers suitable for I to V conversion include:

- High Accuracy: OP97, OP297
- Speed & Accuracy: OP42
- +/- 5V Applications: OP162/OP262/OP462, OP184/OP284/OP484

APPLICATIONS

The AD5544 is inherently a 2-Quadrant multiplying D/A converter. That is, it can be easily set up for Unipolar output

Mechanical Outline Dimensions

Dimensions shown in inches and (mm).

operation. The full-scale output polarity is the inverse of the reference-input voltage.

In some applications it may be necessary to generate the full 4-Quadrant multiplying capability or a bipolar output swing. This is easily accomplished using an additional external amplifier (A2) configured as a summing amplifier, see figure 8. In this circuit the second amplifier (A2) provides a gain of 2 which increases the output span magnitude to 20 volts. Biasing the external amplifier with a 10V offset from the reference voltage results in a full 4-quadrant multiplying circuit. The transfer equation of this circuit shows that both negative and positive output voltages are created as the input data (D) is incremented from code zero (V_{OUT} = -10V) to midscale (V_{OUT} = 0V) to fullscale (V_{OUT} = +10V).

$$V_{OUT} = (D / 32768 - 1) * V_{REF}$$

Equation 2

DIGITAL INTERFACE CONNECTIONS OMITTED FOR CLARITY

Figure 8. Four-Quadrant Multiplying Application Circuit