
REVISIONS																				
LTR					D	ESCR	IPTIC	ON					DA	TE (YR-MO-	·DA)		APPR	OVED	
	•												•				•			
			I		1	1	1	1	1	1		I	I	I	I	1	1			
REV																				
SHEET																				
REV																				
SHEET																				
REV STAT	US			RE	v															
OF SHEETS					EET		1	2	3	4	5	6	7	8	9	10	11	12		
					PARED	RV	1										1			
PMIC N/A					C. Offic					D:	EFEN						CEN'	ľER		
STAND	ARDIZ	ZED								_		1	OAYTO	ON, C	ніо	454	44			
	ITARY AWING				CKED E les E. E															
										MT	ים חבי	ידם י	TTT	T. T1	ATE: A E		IGH	CDF	מים	
THIS D	RAWIN ILABL				ROVED								_			-	IGA MPLI		_	
FOR US		ALL		Mich	ael A. F	rye						THI							,	
AND AGEN	CIES	OF TH		DRA	WING A	APPRO	VAL DA	ATE												
DEPARTMEN'	T OF	DEFEN	SE		3-01-19					SIZ	E	CAG	E CO	DE		- ^ -		00		
AMSC N/A				RFVI	ISION L	EVFI				A	_		726		5	96	2-	89	64	/
ILIDO N/A															<u> </u>					
										SI	HEET		1		OI	?	1	.2		

DESC FORM 193

JUL 91

1. SCOPE

- 1.1 <u>Scope</u>. This drawing describes device requirements for class B microcircuits in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices".
 - 1.2 Part or Identifying Number (PIN). The complete PIN shall be as shown in the following example:

1.2.1 <u>Device type(s)</u>. The device type(s) shall identify the circuit function as follows:

 Device type
 Generic number
 Circuit function

 01
 AD847S
 High speed, low power, operational amplifier

1.2.2 Case outline(s). The case outline(s) shall be as designated in MIL-STD-1835 and as follows:

Outline letter	Descriptive designator	<u>Terminals</u>	Package style
Р	GDIP1-T8 or CDIP2-T8	8	Dual-in-line

- 1.2.3 <u>Lead finish</u>. The lead finish shall be as specified in MIL-M-38510. Finish letter "X" shall not be marked on the microcircuit or its packaging. The "X" designation is for use in specifications when lead finishes A, B, and C are considered acceptable and interchangeable without preference.
 - 1.3 Absolute maximum ratings. (Unless otherwise specified, $T_A = +25^{\circ} C$)

Positive supply voltage (+V _S)	+18 V dc
Negative supply voltage (-V _S)	
Differential input voltage	±6.0 V dc
Input common mode voltage	±V _S
Storage temperature range	-65°C to +150°C
Power dissipation (P _D) <u>1</u> /	1.1 W
Lead temperature (soldering, 10 seconds)	
Thermal resistance, junction-to-case (Θ_{JC})	See MIL-STD-1835
Thermal resistance, junction-to-ambient (Θ_{JA})	110° C/W
Junction temperature (T _J)	+175°C

1.4 Recommended operating conditions.

Positive supply voltage range (+V _S)	+4.5 V dc to +15 V dc
Negative supply voltage range (-V _S)	-4.5 V dc to -15 V dc
Common mode input voltage (V _{CM})	±12 V dc
Ambient operating temperature range (T _A)	

 $\underline{1}$ / Derate linearity above $T_A = +25^{\circ} C$ at 7.3 mW/ $^{\circ} C$.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444	SIZE A		5962-89647
		REVISION LEVEL	SHEET 2

2. APPLICABLE DOCUMENTS

2.1 <u>Government specification, standards, and bulletin</u>. Unless otherwise specified, the following specification, standards, and bulletin of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein.

SPECIFICATION

MILITARY

MIL-M-38510 - Microcircuits, General Specification for.

STANDARDS

MILITARY

MIL-STD-883 - Test Methods and Procedures for Microelectronics.

MIL-STD-1835 - Microcircuit Case Outlines.

BULLETIN

MILITARY

MIL-BUL-103 - List of Standardized Military Drawings (SMD's).

(Copies of the specification, standards, and bulletin required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity.)

2.2 <u>Order of precedence</u>. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence.

3. REQUIREMENTS

- 3.1 <u>Item requirements</u>. The individual item requirements shall be in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices" and as specified herein.
- 3.2 <u>Design, construction, and physical dimensions</u>. The design, construction, and physical dimensions shall be as specified in MIL-M-38510 and herein.
 - 3.2.1 Case outline(s). The case outline(s) shall be in accordance with 1.2.2 herein.
 - 3.2.2 Terminal connections. The terminal connections shall be as specified on figure 1.
- 3.3 <u>Electrical performance characteristics</u>. Unless otherwise specified herein, the electrical performance characteristics are as specified in table I and shall apply over the full ambient operating temperature range.
- 3.4 <u>Electrical test requirements</u>. The electrical test requirements shall be the subgroups specified in table II. The electrical tests for each subgroup are described in table I.

STANDARDIZED
MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444

SIZE A		5962-89647
	REVISION LEVEL	SHEET 3

TABLE I. Electrical performance characteristics.

Test	Symbol	Conditions <u>1</u> / -55° C ≤ T _A ≤ +125° C	Group A subgroups	Device type	Limits 2/		Unit
		unless otherwise specified			Min	Max	
Input offset voltage	VIO	$V_{CM} = 0 \text{ V}, V_{S} = \pm 5 \text{ V}$	1	01		±1.0	mV
			2,3			±4.0	
Input bias current	+I _{IB}	$V_{CM} = 0 \text{ V}, V_{S} = \pm 5 \text{ V}, V_{S} = \pm 15 \text{ V}$	1	01		+5.0	μA
			2,3	_		+7.5	
	-l _{IB}		1	_		+5.0	
			2,3			+7.5	
Input offset current	liO	$V_{CM} = 0 \text{ V}, V_{S} = \pm 5 \text{ V}, \pm 15 \text{ V}$	1	01		±300	nA
			2,3			±400	
Common mode input voltage range <u>3</u> /	+IVR	$V_{CM} = +2.5 \text{ V}, V_{S} = \pm 5 \text{ V}$	1,2,3	01		+2.5	V
	-IVR	$V_{CM} = -2.5 \text{ V}, V_{S} = \pm 5 \text{ V}$				-2.5	
	+IVR	$V_{CM} = +12 \text{ V}, V_{S} = \pm 15 \text{ V}$	1,2,3			+12	
	-IVR	$V_{CM} = -12 \text{ V}, V_{S} = \pm 15 \text{ V}$				-12	-
					1		

STANDARDIZED MILITARY DRAWING	SIZE A		5962-89647
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	SHEET 4

	Т	TABLE I. Electrical performance ch	naracteristics - Cor	ntinued.			
Test	Symbol	Conditions <u>1</u> / -55° C ≤ T _A ≤ +125° C	Group A subgroups	Device type	Limits 2/		Unit
		unless otherwise specified			Min	Max	
Open loop gain	+A _{VOL}	$V_{OUT} = +2.5 \text{ V},$ $R_{L} = 500\Omega, V_{S} = \pm 5 \text{ V}$	1	01	2.0		V/mV
			2,3	_	1.0		
		$V_{OUT} = +10 \text{ V},$ $R_L = 1 \text{ k}\Omega, V_S = \pm 15 \text{ V}$	1	_	3.0		
			2,3		1.5		_
	-A _{VOL}	$V_{OUT} = -2.5 \text{ V},$ $R_L = 500\Omega, V_S = \pm 5 \text{ V}$	1		2.0		
			2,3		1.0		
		$V_{OUT} = -10 \text{ V},$ $R_L = 1 \text{ k}\Omega, V_S = \pm 15 \text{ V}$	1		3.0		
			2,3		1.5		
Common mode rejection ratio	+CMRR	$V_{CM} = +2.5 \text{ V}, V_{S} = \pm 5 \text{ V}$	1	01	80		dB _
		$V_{CM} = +12 \text{ V}, V_{S} = \pm 15 \text{ V}$	1	_	80		
			2,3		75		
	-CMRR	V _{CM} = -2.5 V, V _S = ±5 V	1		80		
		$V_{CM} = -12 \text{ V}, V_{S} = \pm 15 \text{ V}$	1		80		_
			2,3		75		
Output current 4/	ОИТ	V _{OUT} = ±2.5 V, V _S = ±5 V, T _A = +25° C	4	01	13		mA
		$V_{OUT} = \pm 10 \text{ V}, V_{S} = \pm 15 \text{ V},$ $T_{A} = +25^{\circ} \text{ C}$			20		

STANDARDIZED MILITARY DRAWING	SIZE A		5962-89647
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	SHEET 5

	7	TABLE I. Electrical performance cha	aracteristics - Cor	ntinued.			
Test	Symbol	Conditions <u>1</u> / -55° C ≤ T _A ≤ +125° C	Group A subgroups	Device type	Limits 2/		Unit
		unless otherwise specified			Min	Max	
Output voltage swing	+Vout	$V_S = \pm 5 \text{ V}, R_L = 500\Omega$	1	01	+3.0		V
			2,3	_	+2.5		_
		V _S = ±5 V, R _L = 150Ω	1	_	+2.5		_
		$V_S = \pm 15 \text{ V}, R_L = 1 \text{ k}\Omega$	1,2,3		+12		_
		$V_S = \pm 15 \text{ V}, R_L = 500\Omega$	1		+10		_
	-Vout	$V_S = \pm 5 \text{ V}, R_L = 500\Omega$	1		-3.0		
			2,3		-2.5		
		$V_S = \pm 5 \text{ V}, R_L = 150\Omega$	1		-2.5		
		$V_S = \pm 15 \text{ V}, R_L = 1 \text{ k}\Omega$	1,2,3	_	-12		
		$V_S = \pm 15 \text{ V}, R_L = 500\Omega$	1		-10		
Quiescent power supply current	lcc	$V_{OUT} = 0 \text{ V, } I_{OUT} = 0 \text{ mA,}$ $V_{S} = \pm 5 \text{ V}$	1	01		5.7	mA
			2,3			7.8	
		$V_{OUT} = 0 \text{ V, } I_{OUT} = 0 \text{ mA,} $ $V_{S} = \pm 15 \text{ V}$	1			6.3	
			2,3			8.4	
Power supply rejection ratio	PSRR	V _S = ±5 V to ±15 V	1	01	75		dB
			2,3		72		

STANDARDIZED MILITARY DRAWING	SIZE A		5962-89647
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	SHEET 6

	7	FABLE I. Electrical performance chara	acteristics - Co	ntinued.			
Test	Symbol	-55° C \leq T _A \leq +125 $^{\circ}$ C subgroup		Device type	Limits	<u>2</u> /	Unit
		unless otherwise specified			Min	Max	
Quiescent power consumption <u>5</u> /	P_{Q}	$V_{OUT} = 0 \text{ V, } I_{OUT} = 0 \text{ mA,}$ $V_{S} = \pm 5 \text{ V}$	1	01		57	mW
			2,3	_		78	_
		$V_{OUT} = 0 \text{ V}, I_{OUT} = 0 \text{ mA},$ $V_{S} = \pm 15 \text{ V}$	1			189	_
			2,3			252	
Differential input <u>4</u> / resistance	R _{IN}	V _{CM} = 0 V, T _A = +25° C, V _S = ±5 V, ±15 V	4	01	80		kΩ
Slew rate <u>6</u> / <u>4</u> /	+SR	$V_{OUT} = -2.5 \text{ V to } +2.5 \text{ V},$ $R_L = 500\Omega, A_V = 1 \text{ V/V},$	4	01	120		V/µs
		V_S^{\prime} = ±5 V, measured from 10% to 90% point, rising edge	5,6		90		
	-SR	V_{OUT} = +2.5 V to -2.5 V, R _L = 500 Ω , A _V = 1 V/V,	4		90		
		$V_S^2 = \pm 5 \text{ V}$, measured from 90% to 10% point, falling edge	5,6		65		
	+SR	$V_{OUT} = -5 \text{ V to } +5 \text{ V},$ $R_L = 1 \text{ k}\Omega, A_V = 1 \text{ V/V},$	4		200		_
		$V_S = \pm 15 \text{ V}$, measured from 10% to 90% point, rising edge	5,6		130		_
	-SR	$V_{OUT} = +5 \text{ V to -5 V},$ $R_L = 1 \text{ k}\Omega, A_V = 1 \text{ V/V},$	4		145		_
		$V_S = \pm 15 \text{ V}$, measured from 90% to 10% point, falling edge	5,6		120		
Gain bandwidth product <u>4</u> /	GBWP	$V_{OUT} = \pm 100 \text{ mV}, R_L = 500\Omega, V_S = \pm 5 \text{ V}, T_A = +25^{\circ}\text{C}$	4	01	25		MHz
		$V_{OUT} = \pm 100 \text{ mV}, R_L = 1 \text{ k}\Omega,$ $V_S = \pm 15 \text{ V}, T_A = +25^{\circ}\text{ C}$			40		

STANDARDIZED MILITARY DRAWING	SIZE A		5962-89647
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	SHEET 7

	٦	FABLE I. Electrical performance char	<u>racteristics</u> - Co	ntinued.			
Test	Symbol	Conditions <u>1</u> / -55° C ≤ T _A ≤ +125° C	Group A subgroup	Device type	Limits	s <u>2</u> /	Unit
		unless otherwise specified			Min	Max	
Full power bandwidth <u>4</u> / <u>7</u> /	FPBW	$V_{PK} = 2.5 \text{ V}, R_L = 500\Omega,$ $V_S = \pm 5 \text{ V}, T_A = +25^{\circ}\text{ C}$	4	01	5.7		MHz
		V _{PK} = 10 V, R _L = 1 kΩ, V _S = ±15 V, T _A = +25° C			2.8		
Closed loop stable gain <u>4</u> /	CLSG	$R_L = 1 \text{ k}\Omega, V_S = \pm 5 \text{ V}, \pm 15 \text{ V}$	4,5,6	01	1.0		V/V
Rise time <u>4</u> / <u>8</u> /	t _r	$V_{OUT} = 0 \text{ V to } +200 \text{ mV},$ $A_{V} = +1, R_{L} = 1 \text{ k}\Omega,$ $V_{S} = \pm 15 \text{ V}$	4,5,6	01		10	ns
Fall time <u>4</u> / <u>8</u> /	t _f	V_{OUT} = 0 V to -200 mV, A_V = +1, R_L = 1 k Ω , V_S = ±15 V	4,5,6	01		10	ns
Settling time $\underline{4}/$	t _s	A_V = -1 V/V, 10 V step at 0.1% of the fixed value, R_L = 1 kΩ, V_S = ±15 V, T_A = +25° C	4	01		150	ns
		A_V = -1 V/V, 10 V step at 0.01% of the fixed value, R_L = 1 kΩ, V_S = ±15 V, T_A = +25° C				200	
Overshoot 4/	+OS	$V_{OUT} = 0 \text{ V to } +200 \text{ mV},$ $A_{V} = +1, R_{L} = 1 \text{ k}\Omega,$ $V_{S} = \pm 15 \text{ V}, T_{A} = +25^{\circ}\text{ C}$	4	01		30	%
	-os	$V_{OUT} = 0 \text{ V to -200 mV},$ $A_V = +1, R_L = 1 \text{ k}\Omega,$ $V_S = \pm 15 \text{ V}, T_A = +25^{\circ}\text{ C}$				30	

^{1/} Unless otherwise specified, for dc tests, R_S < 100Ω, R_L > 100 kΩ, V_{OUT} = 0 V, and C_L \le 10 pF. Unless otherwise specified, for ac tests, A_V = ±1 V/V, R_L = 1 kΩ, and C_L \le 10 pF. 2/ The limiting terms "min" (minimum) and "max" (maximum) shall be considered to apply to magnitudes

^{7/} Full power bandwidth = SR/($2\pi V_{PK}$). 8/ Rise and fall times measured between 10 percent and 90 percent point.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-89647
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	SHEET 8

only. Negative current shall be defined as conventional current flow out of a device terminal.

^{3/} This test is guaranteed by testing CMRR.

^{4/} If not tested, shall be guaranteed to the limits specified in table I herein.

^{5/} Quiescent power consumption is based on quiescent supply current test maximum (no load at the output).

^{6/} Slew rate test limits are guarantee after 5 minutes of warm-up.

Device type	01
Case outline	Р
Terminal number	Terminal symbol
1 2 3 4 5 6 7 8	NULL INPUT- INPUT+ -VS NC OUTPUT +VS NULL

NC = No connection

FIGURE 1. Terminal connections.

STANDARDIZED
MILITARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444

SIZE
A

S962-89647

REVISION LEVEL
SHEET
9

	0:		
STANDARDIZED	SIZE		E062 90647
MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER	Α		5962-89647
		REVISION LEVEL	SHEET
DAYTON, OHIO 45444			10

- 3.5 <u>Marking</u>. Marking shall be in accordance with MIL-STD-883 (see 3.1 herein). The part shall be marked with the PIN listed in 1.2 herein. In addition, the manufacturer's PIN may also be marked as listed in MIL-BUL-103 (see 6.6 herein).
- 3.6 <u>Certificate of compliance</u>. A certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-BUL-103 (see 6.6 herein). The certificate of compliance submitted to DESC-EC prior to listing as an approved source of supply shall affirm that the manufacturer's product meets the requirements of MIL-STD-883 (see 3.1 herein) and the requirements herein.
- 3.7 <u>Certificate of conformance</u>. A certificate of conformance as required in MIL-STD-883 (see 3.1 herein) shall be provided with each lot of microcircuits delivered to this drawing.
- 3.8 <u>Notification of change</u>. Notification of change to DESC-EC shall be required in accordance with MIL-STD-883 (see 3.1 herein).
- 3.9 <u>Verification and review</u>. DESC, DESC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.

4. QUALITY ASSURANCE PROVISIONS

- 4.1 <u>Sampling and inspection</u>. Sampling and inspection procedures shall be in accordance with section 4 of MIL-M-38510 to the extent specified in MIL-STD-883 (see 3.1 herein).
- 4.2 <u>Screening</u>. Screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. The following additional criteria shall apply:
 - a. Burn-in test, method 1015 of MIL-STD-883.
 - (1) Test condition B. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1015 of MIL-STD-883.
 - (2) $T_A = +125^{\circ} C$, minimum.
 - b. Interim and final electrical test parameters shall be as specified in table II herein, except interim electrical parameter tests prior to burn-in are optional at the discretion of the manufacturer.
- 4.3 <u>Quality conformance inspection</u>. Quality conformance inspection shall be in accordance with method 5005 of MIL-STD-883 including groups A, B, C, and D inspections. The following additional criteria shall apply.
 - 4.3.1 Group A inspection.
 - a. Tests shall be as specified in table II herein.
 - b. Subgroups 7, 8, 9, 10, and 11 in table I, method 5005 of MIL-STD-883 shall be omitted.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-89647
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	SHEET 11

TABLE II. Electrical test requirements.

MIL-STD-883 test requirements	Subgroups (in accordance with method 5005, table I)
Interim electrical parameters (method 5004)	1
Final electrical test parameters (method 5004)	1,2,3,4,5,6
Group A test requirements (method 5005)	1,2,3,4,5,6
Groups C and D end-point electrical parameters (method 5005)	1,2,3

^{*} PDA applies to subgroup 1.

4.3.2 Groups C and D inspections.

- a. End-point electrical parameters shall be as specified in table II herein.
- b. Steady-state life test conditions, method 1005 of MIL-STD-883.
 - (1) Test condition B. The test circuit shall be maintained by the manufacturer under document revision level control and shall be made available to the preparing or acquiring activity upon request. The test circuit shall specify the inputs, outputs, biases, and power dissipation, as applicable, in accordance with the intent specified in test method 1005 of MIL-STD-883.
 - (2) $T_A = +125^{\circ} C$, minimum.
 - (3) Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.
- 5. PACKAGING
- 5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-M-38510.
- 6. NOTES
- 6.1 <u>Intended use</u>. Microcircuits conforming to this drawing are intended for use when military specifications do not exist and qualified military devices that will perform the required function are not available for original equipment manufacturer application. When a military specification exists and the product covered by this drawing has been qualified for listing on QPL-38510, the device specified herein will be inactivated and will not be used for new design. The QPL-38510 product shall be the preferred item for all applications.
- 6.2 <u>Replaceability</u>. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.

STANDARDIZED MILITARY DRAWING	SIZE A		5962-89647
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	SHEET 12

6.3 <u>Configuration control of SMD's</u> . All proposed changes to e individual documents. This coordination will be accomplished in a Change Proposal (Short Form).						
6.4 Record of users. Military and industrial users shall inform Defense Electronics Supply Center when a system application requires configuration control and the applicable SMD. DESC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronics devices (FSC 5962) should contact DESC-EC, telephone (513) 296-6047.						
6.5 <u>Comments</u> . Comments on this drawing should be directed (513) 296-5377.	I to DESC-EC, Da	yton, Ohio 45444, or teleph	one			
6.6 <u>Approved sources of supply</u> . Approved sources of supply have agreed to this drawing and a certificate of compliance (see 3						
STANDARDIZED MILITARY DRAWING	SIZE A		5962-89647			
DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444		REVISION LEVEL	SHEET 13			
DESC FORM 193A						

STANDARDIZED MILITARY DRAWING SOURCE APPROVAL BULLETIN

DATE: 93-01-19

Approved sources of supply for SMD 5962-89647 are listed below for immediate acquisition only and shall be added to MIL-BUL-103 during the next revision. MIL-BUL-103 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DESC-EC. This bulletin is superseded by the next dated revision of MIL-BUL-103.

Standardized	Vendor	Vendor
military drawing	CAGE	similar
PIN	number	PIN 1/
5962-8964701PX	24355	AD847SQ/883

1/ <u>Caution</u>. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

Vendor CAGE number

24355

Vendor name and address

Analog Devices, Incorporated Route 1 Industrial Park Norwood, MA 02062

Point of contact: 804 Woburn Street Wilmington, MA 01887

The information contained herein is disseminated for convenience only and the Government assumes no liability whatsoever for any inaccuracies in this information bulletin.