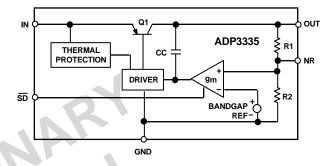
ANALOG DEVICES

High Accuracy Ultralow I_Q , 500 mA, any CAPTM Low Dropout Regulator


Preliminary Technical Information

ADP3335

FEATURES

High Accuracy Over Line and Load: $\pm 0.9\%$ @ $+25^{\circ}$ C, $\pm 1.5\%$ Over Temperature Ultralow Dropout Voltage: 220 mV (Typ) @ 500 mA Requires Only C₀ = 1.0 µF for Stability anyCAP = Stable with Any Type of Capacitor (Including MLCC) Current and Thermal Limiting Low Noise Low Shutdown Current: < 2 µA +2.6 V to +12 V Supply Range -40°C to +85°C Ambient Temperature Range Ultrasmall Thermally Enhanced 8-Lead MSOP Package

FUNCTIONAL BLOCK DIAGRAM

APPLICATIONS

Notebook, Palmtop Computers Battery Powered Systems PCMCIA Regulator Bar Code Scanners Camcorders, Cameras

GENERAL DESCRIPTION

The ADP3335 is a member of the ADP330x family of precision low dropout anyCAP voltage regulators. The ADP3335 operates with an input voltage range of +2.6 V to +12 V and delivers a continuous load current up to 500 mA. The ADP3335 stands out from the conventional LDOs with the lowest thermal resistance of any MSOP-8 package and an enhanced process that enables it to offer performance advantages beyond its competition. Its patented design requires only a 1.0 µF output capacitor for stability. This device is insensitive to output capacitor Equivalent Series Resistance (ESR), and is stable with any good quality capacitor, including ceramic (MLCC) types for space-restricted applications. The ADP3335 achieves exceptional accuracy of ±0.9% at room temperature and ±1.5% over temperature, line and load variations. The dropout voltage of the ADP3335 is only 220 mV (typical) at 500 mA. This device also includes a safety current limit, thermal overload protection and a shutdown feature. In shutdown mode, the ground current is reduced to less than 2 µA. The ADP3335 has ultralow quiescent current 60 µA (typ) in light load situations.

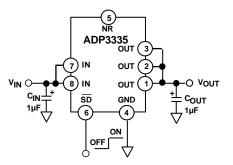


Figure 1. Typical Application Circuit

REV. PrE

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

ADP3335–SPECIFICATIONS^{1,2} ($V_{IN} = 6.0 \text{ V}, C_{IN} = C_{OUT} = 1.0 \mu \text{F}, T_A = -40^{\circ}\text{C}$ to +85°C, unless otherwise noted)

Parameter	Symbol	Conditions	Min	Тур	Max	Units
OUTPUT						
Voltage Accuracy ³	V _{OUT}	$V_{IN} = V_{OUTNOM} + 0.75 V$ to +12 V	-0.9		+0.9	%
		$I_L = 0.1 \text{ mA to } 500 \text{ mA}$				
		$T_A = +25^{\circ}C$	15		.15	%
		$V_{\rm IN} = V_{\rm OUTNOM} + 0.75 \text{ V to } + 12 \text{ V}$ $I_{\rm L} = 0.1 \text{ mA to } 500 \text{ mA}$	-1.5		+1.5	%
Line Regulation ³		$V_{IN} = V_{OUTNOM} + 0.75 \text{ V to } +12 \text{ V}$		0.04		mV/V
		$T_A = +25^{\circ}C$		0.01		111 • / •
Load Regulation		$I_{L} = 0.1 \text{ mA to } 500 \text{ mA}$		0.04		mV/mA
C C		$\overline{T}_{A} = +25^{\circ}C$				
Dropout Voltage	V _{DROP}	$V_{OUT} = 98\%$ of V_{OUTNOM}				
		$I_L = 500 \text{ mA}$		220	600	mV
		$I_L = 250 \text{ mA}$		150	300	mV
		$I_{L} = 50 \text{ mA}$ $I_{L} = 0.1 \text{ mA}$		60 5	150 130	mV mV
Peak Load Current	I _{LDPK}	$V_{\rm IL} = 0.1 \text{ mA}$ $V_{\rm IN} = V_{\rm OUTNOM} + 1 \text{ V}$		5 800	130	mA
Output Noise	V _{NOISE}	$f = 10 \text{ Hz}-100 \text{ kHz}, C_L = 10 \mu\text{F}$		47		μV rms
	NOISE	$I_L = 500 \text{ mA}, C_{NR} = 10 \text{ nF}$				F
		$f = 10$ Hz-100 kHz, $C_L = 10 \mu F$		95		μV rms
		$I_L = 500 \text{ mA}, C_{NR} = 0 \text{ nF}$				
GROUND CURRENT						
In Regulation	I _{GND}	$I_L = 500 \text{ mA}$		5	25	mA
		$I_L = 250 \text{ mA}$		2.5	13	mA
		$I_L = 50 \text{ mA}$		0.5	2.5	mA
In Dramat	Ŧ	$I_L = 0.1 \text{ mA}$		50	100	μA
In Dropout	I _{GND}	$V_{IN} = V_{OUTNOM} - 100 \text{ mV}$ $I_L = 0.1 \text{ mA}$		60	120	μA
In Shutdown	I _{GNDSD}	$\frac{I_L}{SD} = 0$ V, $V_{IN} = 12$ V		0.01	2	μA
SHUTDOWN						•
Threshold Voltage	VTHSD	ON	2.0			V
	• 1	OFF	2.0		0.4	v
SD Input Current	$I_{\overline{S}\overline{D}}$	$0 \le \overline{SD} \le 5 V$		1.4	6	μA
Output Current In Shutdown	$I_{\overline{OSD}}$	$T_A = +25^{\circ}C V_{IN} = 12 \ V$			1	μA
		$T_A = +85^{\circ}C V_{IN} = 12 V$			2	μA

NOTES

1 Ambient temperature of +85°C corresponds to a junction temperature of +125°C under typical full load test conditions. 2 Application stable with no load. 3 $V_{IN} = 2.6V$ for models with $V_{OUTNOM} \le 1.85V$.

Specifications subject to change without notice.

ADP3335

ABSOLUTE MAXIMUM RATINGS*

Input Supply Voltage –0.3 V to +16 V
Shutdown Input Voltage0.3 V to +16 V
Power Dissipation Internally Limited
Operating Ambient Temperature Range40°C to +85°C
Operating Junction Temperature Range -40°C to +150°C
θ_{JA} (2-layer)+153°C/W
θ_{JA} (4-layer)+110°C/W
Storage Temperature Range65°C to +150°C
Lead Temperature Range (Soldering 10 sec)+300°C
Vapor Phase (60 sec)+215°C
Infrared (15 sec)+220°C
*This is a stress rating only; operation beyond these limits can cause the device to be permanently damaged.

ORDERING GUIDE

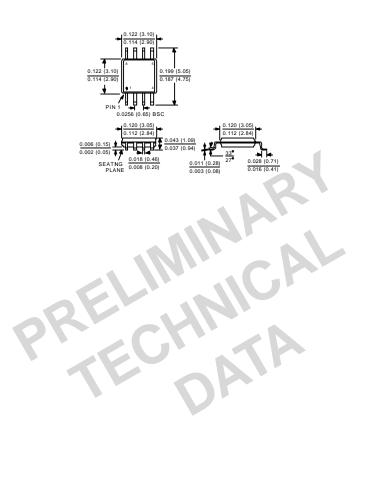
Model	Output Voltage*	Package Option	Marking Code
ADP3335ARM-1.8	1.8 V	RM-8 (MSOP-8)	LFA
ADP3335ARM-2.5	2.5 V	RM-8 (MSOP-8)	LFC
ADP3335ARM-2.85	2.85 V	RM-8 (MSOP-8)	LFD
ADP3335ARM-3.3	3.3 V	RM-8 (MSOP-8)	LFE
ADP3335ARM-5	5 V	RM-8 (MSOP-8)	LFF

*Contact the factory for other output voltage options.

PIN DESCRIPTION

6 V					
8 V	Pin Name		Function		
ted 5°C)°C /W	1,2, 3	OUT	Output of the Regulator. Bypass to ground with a 1.0 μ F or larger capacitor All pins must be connected together for proper operation.		
/W °C	4	GND	Ground Pin.		
°C °C °C to be	5	NR	Noise Redcution Pin. Used for further reduction of output noise (see text for detail). Capacitor required if $C_{OUT} > 3.3 \ \mu F$.		
	6	SD	Active Low Shutdown Pin. Connect to ground to disable the regulator output. When shutdown is not used, this pin shoud be connected to the input pin.		
g	7,8	IN	Regulator Input. All pins must be con- nected together for proper operation.		
T	R		PIN CONFIGURATION		
			OUT 1 • ADP3335 8 IN		
			OUT 3 (Not to Scale) 6 SD GND 4 5 NR		
		1 P			

OUT 1	ADP3335	8	IN
OUT 2	TOP VIEW	7	IN
оит 🖪	(Not to Scale)	6	$\overline{\text{SD}}$
GND 4		5	NR


CAUTION -

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this device features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

OUTLINE DIMENSIONS

Dimensions shown in inches and (mm).

