

DD Form 1695, APR 92
Previous editions are obsolete.
13. DESCRIPTION OF REVISION - CONTINUED

Document No.: 5962-87771
Revision: C
NOR No.: 5962-R035-97
Sheet: 2 of 2

Sheet 10: Table IIA, group C end-point electrical parameters; for device class V add "1,2,3,4,5,6,7,8 2/"
Revision level block; delete " A " and substitute " C ".
Sheet 11: Table IIC, title; delete "Group C end-point electrical parameters." and substitute "240 hour burn-in and group C end-point electrical parameters."

Revision level block; delete "A" and substitute "C".

NOTICE THIS REVISION DESCRIBED BELOW	OF REVISION (NOR) AS BEEN AUTHORIZED FOR	CUMENT LIS	1. DATE (YYMMDD) 94-12-21	Form Approved OMB No. 0704-0188
Public reporting burden for this collection is estimated to average 2 hours per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Department of Defense, Washingtion Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reductidn Project (0704-0188), Washington, DC 20503. PLEASE DO NOT RETURN YOUR COMPLETED FORM TO EITHER OF THESE ADDRESSED. RETURN COMPLETED FORM TO THE GOVERNMENT ISSUING CONTRACTING OFFICER FOR THE CONTRACT/ PROCURING ACTIVITY NUMBER LISTED IN ITEM 2 OF THIS FORM.				2. PROCURING ACTIVITY NO. 3. DODAAC
4. ORIGINATOR	b. ADDRESS (Street, City, State, Zip Code) Defense Electronics Supply Center 1507 Wilmington Pike Dayton, OH 45444-5270		5. CAGE CODE 67268	6. NOR NO. 5962-R049-95
a. TYPED NAME (First, Middle Initial, Last)			$\begin{gathered} \text { 7. CAGE CODE } \\ 67268 \end{gathered}$	8. DOCUMENT NO. 5962-87771
9. TITLE OF DOCUMENT MICROCIRCUIT, QUAD LOW OFFSET, LOW POWER, OPERATIONAL AMPLIFIER, MONOLITHIC SILICON		10. REVISION LETTER		11. ECP NO.
		a. CURRENT A	b. NEW B	5962-87771ECP-1
12. CONFIGURATION ITEM (OR SYSTEM) TO WHICH ECP APPLIES All				
13. DESCRIPTION OF REVISION				

Sheet 1: Revisions Itr column; add "B".
Revisions description column; add "Changes in accordance with NOR 5962-R049-95".
Revisions date column; add "94-12-21"
Revision level block; delete " A " and substitute " B ".
Rev status of sheets; for sheets 1, 6 , delete "A" and substitute "B".
Sheet 6: TABLE I. Slew rate test Delete and substitute the following;

Slew rate					
	SR	$\mathrm{V}_{\mathrm{IN}}= \pm 5.0 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=+1$,	17	0.05	\| V/ $/ \mathrm{s}$
		measured at $\mathrm{V}_{\text {OUT }}= \pm 2.5 \mathrm{~V}$			\|
		$1 \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	\|		\|

Revision level block; delete " A " and substitute " B ".
14. THIS SECTION FOR GOVERNMENT USE ONLY

a. (X one)	X	(1) Existing document supplemented by the NOR may be used in manufacture. (2) Revised document must be received before manufacturer may incorporate this change. (3) Custodian of master document shall make above revision and furnish revised document.			
b. ACTIVITY AUTHORIZED TO APPROVE CHANGE FOR GOVERNMENT DESC-ELDS				c. TYPED NAME (First, Middle Initial, Last) MICHAEL A. FRYE	
d. TITLE Chief, Mic	lec	ics Branch	e. SIGNATURE MICHAEL A. FRYE		f. DATE SIGNED (YYMMDD) 94-12-21
$\begin{array}{r} \text { 15a. ACTIV } \\ \text { DESC-EL } \end{array}$	A	MPLISHING REVISION	b. REVISION COMPLETED (Signature) RICK C. OFFICER		c. DATE SIGNED (YYMMDD) 94-12-21

REVISIONS

1. SCOPE
1.1 Scope. This drawing forms a part of a one part - one part number documentation system (see 6.6 herein). Two product assurance classes consisting of military high reliability (device classes B, Q, and M) and space application (device classes S and V), and a choice of case outlines and lead finishes are available and are reflected in the Part or Identifying Number (PIN). Device class M microcircuits represent non-JAN class B microcircuits in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices". When available, a choice of radiation hardness assurance (RHA) levels are reflected in the PIN.
1.2 PIN. The PIN shall be as shown in the following example:

1.2.1 Radiation hardness assurance (RHA) designator. Device classes M, B, and S RHA marked devices shall meet the MIL-M- 38510 specified RHA levels and shall be marked with the appropriate RHA designator. Device classes Q and V RHA marked devices shall meet the MIL-I-38535 specified RHA levels and shall be marked with the appropriate RHA designator. A dash (-) indicates a non-RHA device.
1.2.2 Device type(s). The device type(s) shall identify the circuit function as follows:

Device type Generic number Circuit function
01 OP400A Quad low offset low power operational amplifier
1.2.3 Device class designator. The device class designator shall be a single letter identifying the product assurance level as follows:

Device class \quad Device requirements documentation
 M Vendor self-certification to the requirements for non-JAN class B microcircuits in accordance with 1.2.1 of MIL-STD-883
 B or S Certification and qualification to MIL-M-38510
 Q or V Certification and qualification to MIL-I-38535

1.2.4 Case outline(s). For device classes M, B, and S, case outline(s) shall meet the requirements in appendix C of MIL-M-38510 and as listed below. For device classes Q and V, case outline(s) shall meet the requirements of MIL-I-38535, appendix C of MIL-M-38510, and as listed below.

Outline letter

Case outline

C
D-1 (14-lead, .785" x .310" x .200"), dual-in-line package
3
C-4 (28-terminal, .460 " x 460 " x .100"), square chip carrier package
1.2.5 Lead finish. The lead finish shall be as specified in MIL-M-38510 for classes M, B, and S or MIL-I-38535 for classes Q and V. Finish letter " X " shall not be marked on the microcircuit or its packaging. The " X " designation is for use in specifications when lead finishes A, B, and C are considered acceptable and interchangeable without preference.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444

SIZE A		$5962-87771$
	REVISION LEVEL A	SHEET 2

1.3 Absolute maximum ratings. 1/

```
Supply voltage (V
Differential input voltage ------------------------ - - +30 V
Input voltage -- -- ------------------------------ Supply voltage
Output short-circuit duration ---------------------- -- Continuous
Power dissipation (P
```



```
Lead temperature range (soldering, 60 seconds) ----- +300' C
Junction temperature (TJ) -----------------------65
Thermal resistance, junction-to-case ( }\mp@subsup{\Theta}{\textrm{JC}}{\prime}) -- -- -- -- - See MIL-M-38510, appendix C
Thermal resistance, junction-to-ambient ( }\mp@subsup{\Theta}{\textrm{JA}}{})\mathrm{ :
Case C ----------------------------------- 910
Case 3------------------------------------ -- 70
```


1.4 Recommended operating conditions.

Ambient operating temperature range $\left(\mathrm{T}_{\mathrm{A}}\right) \cdots-\cdots-----55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

2. APPLICABLE DOCUMENTS

2.1 Government specifications, standards, bulletin, and handbook. Unless otherwise specified, the following specifications, standards, bulletin, and handbook of the issue listed in that issue of the Department of Defense Index of Specifications and Standards specified in the solicitation, form a part of this drawing to the extent specified herein.

SPECIFICATIONS

MILITARY
MIL-M-38510 - Microcircuits, General Specification for.
MIL-I-38535 - Integrated Circuits, Manufacturing, General Specification for.

STANDARDS

MILITARY
MIL-STD-480 - Configuration Control-Engineering Changes, Deviations and Waivers.
MIL-STD-883 - Test Methods and Procedures for Microelectronics.

BULLETIN

MILITARY
MIL-BUL-103 - List of Standardized Military Drawings (SMD's).
HANDBOOK
MILITARY
MIL-HDBK-780 - Standardized Military Drawings.
(Copies of the specifications, standards, bulletin, and handbook required by manufacturers in connection with specific acquisition functions should be obtained from the contracting activity or as directed by the contracting activity.)

1/ Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.

STANDARDIZED MILITARY DRAWING	SIZE				
AEFENSE ELECTRONICS SUPPLY CENTER					
DAYTON, OHIO 45444		\quad	$5962-87771$		
:---	:---	:---			

2.2 Order of precedence. In the event of a conflict between the text of this drawing and the references cited herein, the text of this drawing shall take precedence.

3. REQUIREMENTS

3.1 Item requirements. The individual item requirements for device class M shall be in accordance with 1.2.1 of MIL-STD-883, "Provisions for the use of MIL-STD-883 in conjunction with compliant non-JAN devices" and as specified herein. The individual item requirements for device classes B and S shall be in accordance with MIL-M-38510 and as specified herein. This is a fully characterized detail specification and is suitable for qualification of device classes B and S to the requirements of MIL-M-38510. The individual item requirements for device classes Q and V shall be in accordance with MIL-I-38535, the device manufacturer's Quality Management (QM) plan, and as specified herein.
3.2 Design, construction, and physical dimensions. The design, construction, and physical dimensions shall be as specified in MIL-M-38510 for device classes M, B, and S and MIL-I-38535 for device classes Q and V and herein.
3.2.1 Case outline(s). The case outline(s) shall be in accordance with 1.2.4 herein.
3.2.2 Terminal connections. The terminal connections shall be as specified on figure 1.
3.2.3 Schematic diagram. The schematic diagram shall be as specified on figure 2.
3.3 Electrical performance characteristics and postirradiation parameter limits. Unless otherwise specified herein, the electrical performance characteristics and postirradiation parameter limits are as specified in table I and shall apply over the full ambient operating temperature range.
3.4 Electrical test requirements. The electrical test requirements shall be the subgroups specified in table IIA. The electrical tests for each subgroup are defined in tables I and III.
3.5 Marking. The part shall be marked with the PIN listed in 1.2 herein. Marking for device class M shall be in accordance with MIL-STD-883 (see 3.1 herein). In addition, the manufacturer's PIN may also be marked as listed in MIL-BUL-103. Marking for device classes B and S shall be in accordance with MIL-M-38510. Marking for device classes Q and V shall be in accordance with MIL-I-38535.
3.5.1 Certification/compliance mark. The compliance mark for device class M shall be a " C " as required in MIL-STD-883 (see 3.1 herein). The certification mark for device classes B and S shall be a "J" or "JAN" as required in MIL-M-38510. The certification mark for device classes Q and V shall be a "QML" as required in MIL-I-38535.
3.6 Certificate of compliance. For device class M , a certificate of compliance shall be required from a manufacturer in order to be listed as an approved source of supply in MIL-BUL-103 (see 6.7.3 herein). For device classes Q and V, a certificate of compliance shall be required from a QML-38535 listed manufacturer in order to supply to the requirements of this drawing (see 6.7.2 herein). The certificate of compliance submitted to DESC-ECS prior to listing as an approved source of supply for this drawing shall affirm that the manufacturer's product meets, for device class M the requirements of MIL-STD-883 (see 3.1 herein), or for device classes Q and V , the requirements of MIL-I-38535 and the requirements herein.
3.7 Certificate of conformance. A certificate of conformance as required for device class M in MIL-STD-883 (see 3.1 herein) or device classes B and S in MIL-M-38510 or for device classes Q and V in MIL-I-38535 shall be provided with each lot of microcircuits delivered to this drawing.
3.8 Notification of change for device class M. For device class M, notification to DESC-ECS of change of product (see 6.2 herein) involving devices acquired to this drawing is required for any change as defined in MIL-STD-480.
3.9 Verification and review for device class M. For device class M, DESC, DESC's agent, and the acquiring activity retain the option to review the manufacturer's facility and applicable required documentation. Offshore documentation shall be made available onshore at the option of the reviewer.

```
STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444
```

SIZE A		$5962-87771$
	REVISION LEVEL A	SHEET 4

TABLE I. Electrical performance characteristics.

Test	Symbol	Conditions$\begin{aligned} & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}= \pm 15 \mathrm{~V} \end{aligned}$unless otherwise specified	Group A subgroups	Limits		Unit
				Min	Max	
Input offset voltage	V_{10}		1	-150	+150	$\mu \mathrm{V}$
			2, 3	-270	+270	
Input offset current	${ }^{10}$	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	1	-1.0	+1.0	nA
			2, 3	-2.5	+2.5	
Input bias current	$\pm{ }_{1 B}$	$\mathrm{V}_{\mathrm{CM}}=0 \mathrm{~V}$	1	-3.0	+3.0	nA
			2, 3	-5.0	+5.0	
Input voltage range	$+\mathrm{I}_{\text {VR }}$	1/	1, 2, 3	+12		V
	${ }^{-1} \mathrm{VR}$				-12	
Common mode rejection ratio	CMRR	$\mathrm{V}_{\mathrm{CM}}= \pm 12 \mathrm{~V}$	1	120		$d B$
			2.3	115		
Power supply rejection ratio	PSRR	$\mathrm{V}_{\mathrm{CC}}= \pm 3 \mathrm{~V}$ and $\pm 18 \mathrm{~V}$	1		1.8	$\mu \mathrm{V} / \mathrm{V}$
			2,3		3.2	
Supply current	$\mathrm{I}_{\text {SY }}$	No load 2/	1		2.9	mA
			2, 3		3.1	
Large signal voltage gain	$A_{V S}$	$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	4	2000		V / mV
			5.6	1000		
		$\mathrm{V}_{\text {OUT }}= \pm 10 \mathrm{~V}, \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	4	5000		
Output voltage swing	$+\mathrm{V}_{\mathrm{OP}}$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	4, 5, 6	+11		V
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$		+12		
	$-\mathrm{V}_{\mathrm{OP}}$	$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	4, 5, 6		-11	
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$			-12	

See footnotes at end of table.

SIZE A		$5962-87771$
	REVISION LEVEL A	SHEET 5

TABLE I. Electrical performance characteristics - Continued.

Test	Symbol	Conditions $\begin{aligned} & -55^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}= \pm 15 \mathrm{~V} \end{aligned}$ unless otherwise specified	Group A subgroups	Limits		Unit
				Min	Max	
Input noise voltage density	e_{N}	$\mathrm{f}_{\mathrm{O}}=10 \mathrm{~Hz}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \underline{3} /$	7		22	$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
		$\mathrm{f}_{\mathrm{O}}=1000 \mathrm{~Hz}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \underline{3} /$			22	
Input noise voltage	e_{NT}	1 Hz to $100 \mathrm{~Hz}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	7		438	$n V_{\text {RMS }}$
Slew rate	SR	$\begin{aligned} & \mathrm{V}_{\text {IN }}= \pm 0.5 \mathrm{~V}, \mathrm{AV}=+1, \\ & \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \text { measured at } \mathrm{V}_{\mathrm{OUT}} \\ & = \pm 0.25 \mathrm{~V} \end{aligned}$	7	0.1		V/ $/ \mathrm{s}$
Average input offset voltage drift	TC ${ }_{\text {VIO }}$	See table III.	8		1.2	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$

1/ IVR guaranteed by CMRR test.
2/ ISY limit = total all four amplifiers.
(3/ e_{N} at $f_{o}=10 \mathrm{~Hz}$ and $f_{o}=1000 \mathrm{~Hz}$ is guaranteed by $e_{N T}$ test.
3.10 Microcircuit group assignment for device classes M, B, and S. Device classes M, B, and S devices covered by this drawing shall be in microcircuit group number 49 (see MIL-M-38510, appendix E).
3.11 Serialization for device class S. All device class S devices shall be serialized in accordance with MIL-M-38510.
3.12 Supersession and substitution. PIN substitution information shall be as specified in the appendix.

4. QUALITY ASSURANCE PROVISIONS

4.1 Sampling and inspection. For device class M, sampling and inspection procedures shall be in accordance with section 4 of MIL-M-38510 to the extent specified in MIL-STD-883 (see 3.1 herein). For device classes B and S, sampling and inspection procedures shall be in accordance with MIL-M-38510 and method 5005 of MIL-STD-883, except as modified herein. For device classes Q and V, sampling and inspection procedures shall be in accordance with MIL-I-38535 and the device manufacturer's QM plan.
\(\left.$$
\begin{array}{|c|c|c|c|}\hline \begin{array}{c}\text { STANDARDIZED } \\
\text { MILITARY DRAWING } \\
\text { DEFENSE ELECTRONICS SUPPLY CENTER } \\
\text { DAYTON, OHIO 45444 }\end{array}
$$ \& \begin{array}{c}SIZE

A\end{array} \& \& REVISION LEVEL\end{array}\right\}\)| SHEET |
| :---: |
| |

Device type	01	
Case outlines	C	3
Terminal numbers	Terminal symbols	
1	OUT A	NC
2	-IN A	OUT A
3	+IN A	-IN A
4	$\mathrm{V}_{\mathrm{CC}+}$	NC
5	+INB	NC
6	-IN B	+IN A
7	OUT B	NC
8	OUT C	$\mathrm{V}_{\mathrm{CC}+}$
9	-IN C	NC ${ }^{+}$
10	+IN C	+IN B
11	$\mathrm{V}_{\text {CC- }}$	NC
12	+IND	NC
13	-IN D	-IN B
14	OUT D	OUT B
15	---	NC
16	---	OUT C
17	---	-IN C
18	---	NC
19	---	NC
20	---	+IN C
21	---	NC
22	---	V_{CC}
23	---	NC
24	---	+IN D
25	---	NC
26	---	NC
27	---	-IN D
28	---	OUT D

NC = No connection

FIGURE 1. Terminal connections.

SIZE A		$5962-87771$
	REVISION LEVEL A	SHEET 7

NOTE: One amplifier.

FIGURE 2. Schematic diagram.

		$5962-87771$
REVISION LEVEL A	SHEET 8	

4.2 Screening. For device class M, screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to quality conformance inspection. For device classes B and S, screening shall be in accordance with method 5004 of MIL-STD-883, and shall be conducted on all devices prior to qualification and quality conformance inspection. For device classes Q and V, screening shall be in accordance with MIL-I-38535, and shall be conducted on all devices prior to qualification and technology conformance inspection.

4.2.1 Additional criteria for device classes M, B, and S.

a. Burn-in test, method 1015 of MIL-STD-883.
(1) Test condition A, B, C, or D. For device class M, the test circuit shall be submitted to DESC-ECS for review with the certificate of compliance. For device classes B and S, the test circuit specified on figure 3 will apply.
(2) $\mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$, minimum.
b. The percent defective allowable (PDA) for class S and class B devices shall be as specified in MIL-M-38510, based on failures from group A, subgroup 1 test after cooldown as final electrical test in accordance with method 5004 of MIL-STD-883 and with no intervening electrical measurements. If interim electrical parameter tests are performed prior to burn-in, failures resulting from pre burn-in screening may be excluded from the PDA. If interim electrical parameter tests prior to burn-in are omitted, then all screening failures shall be included in the PDA. The verified failures of group A subgroup 1 after burn-in divided by the total number of devices submitted for burn-in in that lot shall be used to determine the percent defective for that lot, and the lot shall be accepted or rejected based on the PDA for the applicable device class.
c. Interim and final electrical test parameters shall be as specified in table IIA herein.

4.2.2 Additional screening for device classes Q and V .

a. The burn-in test duration, test condition and test temperature or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-I-38535. The burn-in test circuit shall be submitted to DESC-ECS with the certificate of compliance and shall be under the control of the device manufacturer's Technology Review Board (TRB) in accordance with MIL-I-38535.
b. Interim and final electrical test parameters shall be as specified in table IIA herein.
c. Additional screening for device class V beyond the requirements of device class Q shall be as specified in appendix B of MIL-I-38535 and as detailed in table IIB herein.

4.3 Qualification inspection.

4.3.1 Qualification inspection for device classes B and S. Qualification inspection for device classes B and S shall be in accordance with MIL-M-38510. Inspections to be performed shall be those specified in method 5005 of MIL-STD-883 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.5).
4.3.2 Qualification inspection for device classes Q and V. Qualification inspection for device classes Q and V shall be in accordance with MIL-I-38535. Inspections to be performed shall be those specified in MIL-I-38535 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.5).

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444

SIZE A		$5962-87771$
	REVISION LEVEL A	SHEET 9

TABLE IIA. Electrical test requirements.

Test requirements	Subgroups (per method 5005, table I)			Subgroups (per MIL-I-38535, table III)	
	Device class M	Device class B	Device class S	Device class Q	Device class V
Interim electrical parameters (see 4.2)	1	1	1	1	1
Final electrical parameters (see 4.2)	$\begin{gathered} 1,2,3, \\ 4,7 \\ 1 / \end{gathered}$	$\begin{gathered} 1,2,3, \\ 4,7 \\ 1 / \end{gathered}$	$\left\lvert\, \begin{gathered} 1,2,3, \\ 4,7 \\ 1 / \end{gathered}\right.$	$\begin{gathered} 1,2,3, \\ 4,7 \\ 1 / \end{gathered}$	$\left\lvert\, \begin{gathered} 1,2,3, \\ 4,7 \\ 1 / \end{gathered}\right.$
Group A test requirements (see 4.4)	$\begin{aligned} & 1,2,3, \\ & 4,5,6, \\ & 7,8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,2,3, \\ & 4,5,6, \\ & 7,8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,2,3, \\ & 4,5,6, \\ & 7,8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,2,3, \\ & 4,5,6, \\ & 7.8 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,2,3, \\ & 4,5,6, \\ & 7.8 \\ & \hline \end{aligned}$
Group B end-point electrical parameters (see 4.4)	---	---	$\begin{gathered} 1,2,3 \\ \underline{2} / \end{gathered}$	---	$\begin{aligned} & 1,2,3, \\ & 4,5,6, \\ & 7,8 \underline{2} / \end{aligned}$
Group C end-point electrical parameters (see 4.4)	1	$12 /$	---	1	---
Group D end-point electrical parameters (see 4.4)	1	1	1	1	1
Group E end-point electrical parameters (see 4.4)	$\begin{aligned} & 1,2,3, \\ & 4,7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,2,3, \\ & 4,7 \end{aligned}$	$\begin{aligned} & 1,2,3, \\ & 4,7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,2,3, \\ & 4,7 \\ & \hline \end{aligned}$	$\begin{aligned} & 1,2,3, \\ & 4,7 \\ & \hline \end{aligned}$

1/ PDA applies to subgroup 1.
2/ Delta limits in accordance with table IIC shall be computed with reference to the previous interim electrical parameters.
4.4 Conformance inspection. Quality conformance inspection for device class M shall be in accordance with MIL-STD-883 (see 3.1 herein) and as specified herein. Quality conformance inspection for device classes B and S shall be in accordance with MIL-M-38510 and as specified herein. Inspections to be performed for device classes M, B, and S shall be those specified in method 5005 of MIL-STD-883 and herein for groups A, B, C, D, and E inspections (see 4.4.1 through 4.4.5). Technology conformance inspection for classes Q and V shall be in accordance with MIL-I-38535 including groups A, B, C, D, and E inspections and as specified herein except where option 2 of MIL-l-38535 permits alternate in-line control testing.

4.4.1 Group A inspection.

a. Tests shall be as specified in table IIA and table III herein.
b. For device class M, subgroups 7 and 8 tests shall be sufficient to verify the truth table. For device classes B and S, subgroups 7 and 8 tests shall be sufficient to verify the truth table as approved by the qualifying activity. For device classes Q and V, subgroups 7 and 8 shall include verifying the functionality of the device.
c. Subgroups 9,10 , and 11 of table I of method 5005 of MIL-STD- 883 shall be omitted.
STANDARDIZED
MILTARY DRAWING
DEFENSE ELECTRONICS SUPPLY CENTER
DAYTON, OHIO 45444

SIZE A		$5962-87771$
	REVISION LEVEL A	SHEET 10

TABLE IIB. Additional screening for device class V.

Test	MIL-STD-883, test method	Lot requirement
Particle impact noise detection	2020	100%
Internal visual	2010, condition A or approved alternate	100%
Nondestructive bond pull	2023 or approved alternate	100%
Reverse bias burn-in	1015	100%
Burn-in	1015, total of 240 hours at +125 C	100%
Radiographic	2012	100%

TABLE IIC. Group C end-point electrical parameters.

Test	Limit		Delta		
	Min	Max	Min	Max	Unit
$V_{I O}$	-150	150	-75	+75	$\mu \mathrm{~V}$
$+\mathrm{I}_{\mathrm{IB}}$	-3	3	-2	2	nA
$-\mathrm{I}_{\mathrm{IB}}$	-3	3	-2	2	nA

4.4.2 Group B inspection. Group B inspection shall be in accordance with table II of method 5005 of MIL-STD-883.
a. End-point electrical parameters shall be as specified in table IIA herein.
b. Steady-state life test for class S devices shall be in accordance with table II of method 5005 of MIL-STD-883, using the circuit shown on figure 3.
4.4.3 Group C inspection. The group C inspection end-point electrical parameters shall be as specified in table IIA herein.

SIZE A		$5962-87771$
	REVISION LEVEL A	SHEET 11

TABLE III. Group A inspection.

Subgroup number	Symbol	Test number 1/	Adapter pin number						Relays energized
			$\mathrm{V}_{\text {S1 }}$	$\mathrm{V}_{\mathrm{S} 2}$	$\mathrm{V}_{\text {S3 }}$	$\mathrm{V}_{\text {S4 }}$	P1	P2	
$\begin{gathered} 1 \\ \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \end{gathered}$	V_{10}	$\begin{aligned} & 1 \mathrm{~A} \\ & 1 \mathrm{~B} \\ & 1 \mathrm{C} \\ & 1 \mathrm{D} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{K} 1, \mathrm{~K} 2 \\ & \mathrm{~K} 1, \mathrm{~K} 2 \\ & \mathrm{~K} 1, \mathrm{~K} 2 \\ & \mathrm{~K} 1, \mathrm{~K} 2 \end{aligned}$
	I_{10}	$\begin{aligned} & 2 \mathrm{~A} \\ & 2 \mathrm{~B} \\ & 2 \mathrm{C} \\ & 2 \mathrm{D} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \vee \\ & 0 \vee \\ & 0 \vee \\ & 0 \vee \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \end{aligned}$	
	$+{ }_{1 B}$	$\begin{aligned} & 3 \mathrm{~A} \\ & 3 \mathrm{~B} \\ & 3 \mathrm{C} \\ & 3 \mathrm{D} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { K2 } \\ & \text { K2 } \\ & \text { K2 } \\ & \text { K2 } \end{aligned}$
	${ }^{-1} \mathrm{IB}$	$\begin{aligned} & 4 \mathrm{~A} \\ & 4 \mathrm{~B} \\ & 4 \mathrm{C} \\ & 4 \mathrm{D} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \end{aligned}$	K1 K1 K1 K1
	CMRR	$\begin{aligned} & 5 \mathrm{~A} \\ & 5 \mathrm{~B} \\ & 5 \mathrm{C} \\ & 5 \mathrm{D} \\ & 6 \mathrm{~A} \\ & 6 \mathrm{~B} \\ & 6 \mathrm{C} \\ & 6 \mathrm{D} \end{aligned}$	$\begin{aligned} & -12 \mathrm{~V} \\ & -12 \mathrm{~V} \\ & -12 \mathrm{~V} \\ & -12 \mathrm{~V} \\ & \\ & 12 \mathrm{~V} \\ & 12 \mathrm{~V} \\ & 12 \mathrm{~V} \\ & 12 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -12 \mathrm{~V} \\ & -12 \mathrm{~V} \\ & -12 \mathrm{~V} \\ & -12 \mathrm{~V} \\ & 12 \mathrm{~V} \\ & 12 \mathrm{~V} \\ & 12 \mathrm{~V} \\ & 12 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -12 \mathrm{~V} \\ & -12 \mathrm{~V} \\ & -12 \mathrm{~V} \\ & -12 \mathrm{~V} \\ & \\ & 12 \mathrm{~V} \\ & 12 \mathrm{~V} \\ & 12 \mathrm{~V} \\ & 12 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -12 \mathrm{~V} \\ & -12 \mathrm{~V} \\ & -12 \mathrm{~V} \\ & -12 \mathrm{~V} \\ & 12 \mathrm{~V} \\ & 12 \mathrm{~V} \\ & 12 \mathrm{~V} \\ & 12 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 27 \mathrm{~V} \\ & 27 \mathrm{~V} \\ & 27 \mathrm{~V} \\ & 27 \mathrm{~V} \\ & 3 \mathrm{~V} \\ & 3 \mathrm{~V} \\ & 3 \mathrm{~V} \\ & 3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -3 V \\ & -3 V \\ & -3 V \\ & -3 V \\ & -27 V \\ & -27 V \\ & -27 V \\ & -27 V \end{aligned}$	K1, K2 K1, K2
	PSRR	$\begin{aligned} & 7 \mathrm{~A} \\ & 7 \mathrm{~B} \\ & 7 \mathrm{C} \\ & 7 \mathrm{D} \\ & 8 \mathrm{~A} \\ & 8 \mathrm{~B} \\ & 8 \mathrm{C} \\ & 8 \mathrm{D} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3 \mathrm{~V} \\ & 3 \mathrm{~V} \\ & 3 \mathrm{~V} \\ & 3 \mathrm{~V} \\ & \\ & 18 \mathrm{~V} \\ & 18 \mathrm{~V} \\ & 18 \mathrm{~V} \\ & 18 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -3 V \\ & -3 V \\ & -3 V \\ & -3 V \\ & -18 V \\ & -18 \vee \\ & -18 V \\ & -18 V \end{aligned}$	K1, K2 K1, K2
	$I_{\text {SY }}$	9	0 V	0 V	0 V	0 V	15 V	-15 V	K1, K2

See footnote at end of table.

SIZE A		$5962-87771$
	REVISION LEVEL A	SHEET 12

TABLE III. Group A inspection - Continued.

Test number 1/	Measured pin			Equation	Limits		Units
	No.	Value	Units		Min	Max	
$\begin{aligned} & 1 \mathrm{~A} \\ & 1 \mathrm{~B} \\ & 1 \mathrm{C} \\ & 1 \mathrm{D} \end{aligned}$	MP 1 MP 2 MP 3 MP 4	$\begin{aligned} & \text { E } 1 \\ & \text { E } 2 \\ & \text { E } 3 \\ & \text { E } 4 \end{aligned}$	$\begin{aligned} & V \\ & V \\ & V \\ & V \end{aligned}$	$\begin{aligned} & V_{1 O}=E 1 / 1000 \\ & V_{1 O}=E 2 / 1000 \\ & V_{1 O}=E 3 / 1000 \\ & V_{1 O}=E 4 / 1000 \end{aligned}$	$\begin{array}{r} -150 \\ -150 \\ -150 \\ -150 \end{array}$	$\begin{aligned} & +150 \\ & +150 \\ & +150 \\ & +150 \end{aligned}$	$\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$ $\mu \mathrm{V}$
$\begin{aligned} & 2 \mathrm{~A} \\ & 2 \mathrm{~B} \\ & 2 \mathrm{C} \\ & 2 \mathrm{D} \end{aligned}$	MP 1 MP 2 MP 3 MP 4	$\begin{aligned} & \text { E } 5 \\ & \text { E } 6 \\ & \text { E } 7 \\ & \text { E } 8 \end{aligned}$	$\begin{aligned} & \text { V } \\ & \text { V } \\ & \text { V } \\ & \text { V } \end{aligned}$	$\begin{aligned} & I_{I O}=(E 5-E 1) /(1000 \times 100000) \\ & I_{I O}=(E 6-E 2) /(1000 \times 100000) \\ & I_{I O}=(E 7-E 3) /(1000 \times 100000) \\ & I_{I O}=(E 8-E 4) /(1000 \times 100000) \end{aligned}$	$\begin{aligned} & -1.0 \\ & -1.0 \\ & -1.0 \\ & -1.0 \end{aligned}$	$\begin{aligned} & +1.0 \\ & +1.0 \\ & +1.0 \\ & +1.0 \end{aligned}$	$\begin{aligned} & \text { nA } \\ & \text { nA } \\ & \text { nA } \\ & \mathrm{nA} \end{aligned}$
$\begin{aligned} & 3 \mathrm{~A} \\ & 3 \mathrm{~B} \\ & 3 \mathrm{C} \\ & 3 \mathrm{D} \end{aligned}$	MP 1 MP 2 MP 3 MP 4	E 9 E 10 E 11 E 12	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & +I_{I B}=(E 9-E 1) /(1000 \times 100000) \\ & +I_{I B}=(E 10-E 2) /(1000 \times 100000) \\ & +I_{I B}=(E 11-E 3) /(1000 \times 100000) \\ & +I_{I B}=(E 12-E 4) /(1000 \times 100000) \end{aligned}$	$\begin{aligned} & -3.0 \\ & -3.0 \\ & -3.0 \\ & -3.0 \end{aligned}$	$\begin{aligned} & +3.0 \\ & +3.0 \\ & +3.0 \\ & +3.0 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \\ & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
$\begin{aligned} & 4 \mathrm{~A} \\ & 4 \mathrm{~B} \\ & 4 \mathrm{C} \\ & 4 \mathrm{D} \end{aligned}$	MP 1 MP 2 MP 3 MP 4	E 13 E 14 E 15 E 16	V V V V	$\begin{aligned} & -_{I B}=(E 13-E 1) /(1000 \times 100000) \\ & -I_{I B}=(E 14-E 2) /(1000 \times 100000) \\ & -I_{I B}=(E 15-E 3) /(1000 \times 100000) \\ & -I_{I B}=(E 16-E 4) /(1000 \times 100000) \end{aligned}$	$\begin{aligned} & -3.0 \\ & -3.0 \\ & -3.0 \\ & -3.0 \end{aligned}$	$\begin{aligned} & +3.0 \\ & +3.0 \\ & +3.0 \\ & +3.0 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \\ & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
$\begin{aligned} & 5 \mathrm{~A} \\ & 5 \mathrm{~B} \\ & 5 \mathrm{C} \\ & 5 \mathrm{D} \\ & 6 \mathrm{~A} \\ & 6 \mathrm{~B} \\ & 6 \mathrm{C} \\ & 6 \mathrm{D} \end{aligned}$	MP 1 MP 2 MP 3 MP 4 MP 1 MP 2 MP 3 MP 4	E 17 E 18 E 19 E 20 E 21 E 22 E 23 E 24	V V V V V V V V V		$\begin{aligned} & 120 \\ & 120 \\ & 120 \\ & 120 \end{aligned}$		$\begin{aligned} & \mathrm{dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \\ & \mathrm{~dB} \end{aligned}$
$\begin{aligned} & 7 \mathrm{~A} \\ & 7 \mathrm{~B} \\ & 7 \mathrm{C} \\ & 7 \mathrm{D} \\ & 8 \mathrm{~A} \\ & 8 \mathrm{~B} \\ & 8 \mathrm{C} \\ & 8 \mathrm{D} \end{aligned}$	MP 1 MP 2 MP 3 MP 4 MP 1 MP 2 MP 3 MP 4	E 25 E 26 E 27 E 28 E 29 E 30 E 31 E 32	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \end{aligned}$	$\begin{gathered} \text {--- } \\ --- \\ --- \\ \text { PSRR } \\ =\text { ABS(E29 }- \text { E25)/30000 } \\ \text { PSRR } \\ =\text { ABS(E30 }- \text { E26)/30000 } \\ \text { PSRR } \end{gathered}=\text { ABS(E31 }- \text { E27)/30000 }$		$\begin{aligned} & 1.8 \\ & 1.8 \\ & 1.8 \\ & 1.8 \end{aligned}$	$\mu \mathrm{V} / \mathrm{V}$ $\mu \mathrm{V} / \mathrm{V}$ $\mu \mathrm{V} / \mathrm{V}$ $\mu \mathrm{V} / \mathrm{V}$
9	P1	11	mA	$I_{S Y}=11$		2.9	mA

See footnote at end of table.

SIZE A		$5962-87771$
	REVISION LEVEL A	SHEET 13

TABLE III. Group A inspection - Continued.

Subgroup number	Symbol	$\begin{aligned} & \text { Test } \\ & \text { number } \\ & 1 / \end{aligned}$	Adapter pin number						Relays energized
			$\mathrm{v}_{\text {S1 }}$	$\mathrm{v}_{\text {S2 }}$	$\mathrm{v}_{\mathrm{S} 3}$	$v_{S 4}$	P1	P2	
${ }^{2}{ }_{\mathrm{A}}=+125^{\circ} \mathrm{C}$	V_{10}	$\begin{aligned} & 10 \mathrm{~A} \\ & 10 \mathrm{~B} \\ & 10 \mathrm{C} \\ & 10 \mathrm{D} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{K} 1, \mathrm{~K} 2 \\ & \mathrm{~K} 1, \mathrm{~K} 2 \\ & \mathrm{~K} 1, \mathrm{~K} 2 \\ & \mathrm{~K} 1, \mathrm{~K} 2 \end{aligned}$
	${ }^{1} \mathrm{O}$	$\begin{aligned} & 11 \mathrm{~A} \\ & 11 \mathrm{~B} \\ & 11 \mathrm{C} \\ & 11 \mathrm{D} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \end{aligned}$	
	$+{ }_{1 B}$	$\begin{aligned} & 12 \mathrm{~A} \\ & 12 \mathrm{~B} \\ & 12 \mathrm{C} \\ & 12 \mathrm{D} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	0 V 0 V 0 V 0 V	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { K2 } \\ & \text { K2 } \\ & \text { K2 } \\ & \text { K2 } \end{aligned}$
	${ }^{-1 B}$	$\begin{aligned} & 13 \mathrm{~A} \\ & 13 \mathrm{~B} \\ & 13 \mathrm{C} \\ & 13 \mathrm{D} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { K1 } \\ & \text { K1 } \\ & \text { K1 } \\ & \text { K1 } \end{aligned}$
	CMRR	$\begin{aligned} & 14 \mathrm{~A} \\ & 14 \mathrm{~B} \\ & 14 \mathrm{C} \\ & 14 \mathrm{D} \\ & \\ & 15 \mathrm{~A} \\ & 15 \mathrm{~B} \\ & 15 \mathrm{C} \\ & 15 \mathrm{D} \end{aligned}$	$\begin{aligned} & -12 \mathrm{~V} \\ & -12 \mathrm{~V} \\ & -12 \mathrm{~V} \\ & -12 \mathrm{~V} \\ & 12 \mathrm{~V} \\ & 12 \mathrm{~V} \\ & 12 \mathrm{~V} \\ & 12 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -12 \mathrm{~V} \\ & -12 \mathrm{~V} \\ & -12 \mathrm{~V} \\ & -12 \mathrm{~V} \\ & \\ & 12 \mathrm{~V} \\ & 12 \mathrm{~V} \\ & 12 \mathrm{~V} \\ & 12 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -12 \mathrm{~V} \\ & -12 \mathrm{~V} \\ & -12 \mathrm{~V} \\ & -12 \mathrm{~V} \\ & 12 \mathrm{~V} \\ & 12 \mathrm{~V} \\ & 12 \mathrm{~V} \\ & 12 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -12 \mathrm{~V} \\ & -12 \mathrm{~V} \\ & -12 \mathrm{~V} \\ & -12 \mathrm{~V} \\ & \\ & 12 \mathrm{~V} \\ & 12 \mathrm{~V} \\ & 12 \mathrm{~V} \\ & 12 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 27 \mathrm{~V} \\ & 27 \mathrm{~V} \\ & 27 \mathrm{~V} \\ & 27 \mathrm{~V} \\ & 3 \mathrm{~V} \\ & 3 \mathrm{~V} \\ & 3 \mathrm{~V} \\ & 3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -3 \mathrm{~V} \\ & -3 \mathrm{~V} \\ & -3 \mathrm{~V} \\ & -3 \mathrm{~V} \\ & -27 \mathrm{~V} \\ & -27 \mathrm{~V} \\ & -27 \mathrm{~V} \\ & -27 \mathrm{~V} \end{aligned}$	K1, K2 K1, K2
	PSRR	$\begin{aligned} & 16 \mathrm{~A} \\ & 16 \mathrm{~B} \\ & 16 \mathrm{C} \\ & 16 \mathrm{D} \\ & 17 \mathrm{~A} \\ & 17 \mathrm{~B} \\ & 17 \mathrm{C} \\ & 17 \mathrm{D} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3 \mathrm{~V} \\ & 3 \mathrm{~V} \\ & 3 \mathrm{~V} \\ & 3 \mathrm{~V} \\ & 18 \mathrm{~V} \\ & 18 \mathrm{~V} \\ & 18 \mathrm{~V} \\ & 18 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -3 \mathrm{~V} \\ & -3 \mathrm{~V} \\ & -3 \mathrm{~V} \\ & -3 \mathrm{~V} \\ & -18 \mathrm{~V} \\ & -18 \mathrm{~V} \\ & -18 \mathrm{~V} \\ & -18 \mathrm{~V} \end{aligned}$	K1, K2 K1, K2
	I_{SY}	18	0 V	0 V	0 V	0 V	15 V	-15 V	K1, K2

See footnote at end of table.

SIZE A		$5962-87771$
	REVISION LEVEL A	SHEET 14

TABLE III. Group A inspection - Continued.

Test number 1/	Measured pin			Equation	Limits		Units
	No.	Value	Units		Min	Max	
$\begin{aligned} & 10 \mathrm{~A} \\ & 10 \mathrm{~B} \\ & 10 \mathrm{C} \\ & 10 \mathrm{D} \end{aligned}$	MP 1 MP 2 MP 3 MP 4	E33 E34 E35 E36	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & V_{1 O}=E 33 / 1000 \\ & V_{1 O}=E 34 / 1000 \\ & V_{1 O}=E 35 / 1000 \\ & V_{I O}=E 36 / 1000 \end{aligned}$	$\begin{aligned} & -270 \\ & -270 \\ & -270 \\ & -270 \end{aligned}$	$\begin{aligned} & +270 \\ & +270 \\ & +270 \\ & +270 \end{aligned}$	$\begin{aligned} & \mu \mathrm{V} \\ & \mu \mathrm{~V} \\ & \mu \mathrm{~V} \\ & \mu \mathrm{~V} \end{aligned}$
$\begin{aligned} & 11 \mathrm{~A} \\ & 11 \mathrm{~B} \\ & 11 \mathrm{C} \\ & 11 \mathrm{D} \end{aligned}$	MP 1 MP 2 MP 3 MP 4	$\begin{aligned} & \text { E37 } \\ & \text { E38 } \\ & \text { E39 } \\ & \text { E40 } \end{aligned}$	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & I_{I O}=(E 37-E 33) /(1000 \times 100000) \\ & l_{I O}=(E 38-E 34) /(1000 \times 100000) \\ & I_{I O}=(E 39-E 35) /(1000 \times 100000) \\ & I_{I O}=(E 40-E 36) /(1000 \times 100000) \end{aligned}$	$\begin{aligned} & -2.5 \\ & -2.5 \\ & -2.5 \\ & -2.5 \end{aligned}$	$\begin{aligned} & +2.5 \\ & +2.5 \\ & +2.5 \\ & +2.5 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \\ & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
$\begin{aligned} & 12 \mathrm{~A} \\ & 12 \mathrm{~B} \\ & 12 \mathrm{C} \\ & 12 \mathrm{D} \end{aligned}$	MP 1 MP 2 MP 3 MP 4	E41 E42 E43 E44	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & +I_{I B}=(E 41-E 33) /(1000 \times 100000) \\ & +I_{I B}=(E 42-E 34) /(1000 \times 100000) \\ & +I_{I B}=(E 43-E 35) /(1000 \times 100000) \\ & +I_{I B}=(E 44-E 36) /(1000 \times 100000) \end{aligned}$	$\begin{aligned} & -5.0 \\ & -5.0 \\ & -5.0 \\ & -5.0 \end{aligned}$	$\begin{aligned} & +5.0 \\ & +5.0 \\ & +5.0 \\ & +5.0 \end{aligned}$	$\begin{aligned} & \mathrm{nA} \\ & \mathrm{nA} \\ & \mathrm{nA} \\ & \mathrm{nA} \end{aligned}$
$\begin{aligned} & 13 \mathrm{~A} \\ & 13 \mathrm{~B} \\ & 13 \mathrm{C} \\ & 13 \mathrm{D} \end{aligned}$	MP 1 MP 2 MP 3 MP 4	E45 E46 E47 E48	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	$\begin{aligned} & -I_{I B}=(E 45-E 33) /(1000 \times 100000) \\ & -I_{I B}=(E 46-E 34) /(1000 \times 100000) \\ & -I_{I B}=(E 47-E 35) /(1000 \times 100000) \\ & -I_{I B}=(E 48-E 36) /(1000 \times 100000) \end{aligned}$	$\begin{aligned} & -5.0 \\ & -5.0 \\ & -5.0 \\ & -5.0 \end{aligned}$	$\begin{aligned} & +5.0 \\ & +5.0 \\ & +5.0 \\ & +5.0 \end{aligned}$	nA nA nA nA
14 A 14 B 14 C 14 D 15 A 15 B 15 C 15 D	MP 1 MP 2 MP 3 MP 4 MP 1 MP 2 MP 3 MP 4	E49 E50 E51 E52 E53 E54 E55 E56	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$		$\begin{aligned} & 115 \\ & 115 \\ & 115 \\ & 115 \end{aligned}$		dB dB dB dB
$\begin{aligned} & 16 \mathrm{~A} \\ & 16 \mathrm{~B} \\ & 16 \mathrm{C} \\ & 16 \mathrm{D} \\ & 17 \mathrm{~A} \\ & 17 \mathrm{~B} \\ & 17 \mathrm{C} \\ & 17 \mathrm{D} \end{aligned}$	MP 1 MP 2 MP 3 MP 4 MP 1 MP 2 MP 3 MP 4	E57 E58 E59 E60 E61 E62 E63 E64	$\begin{aligned} & \mathrm{V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$	$\begin{gathered} --- \\ --- \\ --- \\ \text {-- } \\ \text { PSRR }=\text { ABS(E61 }- \text { E57)/30000 } \\ \text { PSRR }=\text { ABS(E62 }- \text { E58)/30000 } \\ \text { PSRR }=\text { ABS(E63 }- \text { E59)/30000 } \\ \text { PSRR }=A B S(E 64-E 60) / 30000 \end{gathered}$		$\begin{aligned} & 3.2 \\ & 3.2 \\ & 3.2 \\ & 3.2 \end{aligned}$	$\mu \mathrm{V} / \mathrm{V}$ $\mu \mathrm{V} / \mathrm{V}$ $\mu \mathrm{V} / \mathrm{V}$ $\mu \mathrm{V} / \mathrm{V}$
18	P1	12	mA	$\mathrm{I}_{S Y}=12$		3.1	mA

See footnote at end of table.

STANDARDIZED
 MILITARY DRAWING
 DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444

SIZE A		$5962-87771$
	REVISION LEVEL A	SHEET 15

TABLE III. Group A inspection - Continued.

Subgroup number	Symbol	Test number 1/	Adapter pin number						Relays energized
			$\mathrm{V}_{\mathrm{S} 1}$	$\mathrm{V}_{\mathrm{S} 2}$	$\mathrm{V}_{\mathrm{S} 3}$	$\mathrm{V}_{\mathrm{S} 4}$	P1	P2	
$\begin{gathered} 3 \\ T_{A}=-55^{\circ} \mathrm{C} \end{gathered}$	V_{10}	$\begin{aligned} & 19 \mathrm{~A} \\ & 19 \mathrm{~B} \\ & 19 \mathrm{C} \\ & 19 \mathrm{D} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	0 V 0 V 0 V 0 V	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { K1, K2 } \\ & \text { K1, K2 } \\ & \text { K1, K2 } 2 \\ & \text { K1, K2 } \end{aligned}$
	${ }_{1}$	$\begin{aligned} & 20 \mathrm{~A} \\ & 20 \mathrm{~B} \\ & 20 \mathrm{C} \\ & 20 \mathrm{D} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	0 V 0 V 0 V 0 V	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \end{aligned}$	
	${ }_{+}^{1 B}$	$\begin{aligned} & 21 \mathrm{~A} \\ & 21 \mathrm{~B} \\ & 21 \mathrm{C} \\ & 21 \mathrm{D} \end{aligned}$	0 V 0 V 0 V 0 V	0 V 0 V 0 V 0 V	0 V 0 V 0 V 0 V	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \end{aligned}$	$\begin{array}{\|l\|l} \text { K2 } \\ \text { K2 } \\ \text { K2 } \\ \text { K2 } \end{array}$
	${ }^{-1 B}$	$\begin{array}{\|l\|} \hline 22 \mathrm{~A} \\ 22 \mathrm{~B} \\ 22 \mathrm{C} \\ 22 \mathrm{D} \end{array}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	0 V 0 V 0 V 0 V	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { K1 } \\ & \text { K1 } \\ & \text { K1 } \\ & \text { K1 } \end{aligned}$
	CMRR	$\begin{aligned} & 23 \mathrm{~A} \\ & 23 \mathrm{~B} \\ & 23 \mathrm{C} \\ & 23 \mathrm{D} \\ & \\ & 24 \mathrm{~A} \\ & 24 \mathrm{~B} \\ & 24 \mathrm{C} \\ & 24 \mathrm{D} \end{aligned}$	$\begin{aligned} & -12 \mathrm{~V} \\ & -12 \mathrm{~V} \\ & -12 \mathrm{~V} \\ & -12 \mathrm{~V} \\ & \\ & 12 \mathrm{~V} \\ & 12 \mathrm{~V} \\ & 12 \mathrm{~V} \\ & 12 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -12 \mathrm{~V} \\ & -12 \mathrm{~V} \\ & -12 \mathrm{~V} \\ & -12 \mathrm{~V} \\ & 12 \mathrm{~V} \\ & 12 \mathrm{~V} \\ & 12 \mathrm{~V} \\ & 12 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -12 \mathrm{~V} \\ & -12 \mathrm{~V} \\ & -12 \mathrm{~V} \\ & -12 \mathrm{~V} \\ & \\ & 12 \mathrm{~V} \\ & 12 \mathrm{~V} \\ & 12 \mathrm{~V} \\ & 12 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -12 \mathrm{~V} \\ & -12 \mathrm{~V} \\ & -12 \mathrm{~V} \\ & -12 \mathrm{~V} \\ & 12 \mathrm{~V} \\ & 12 \mathrm{~V} \\ & 12 \mathrm{~V} \\ & 12 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 27 V \\ & 27 V \\ & 27 V \\ & 27 \mathrm{~V} \\ & 3 \mathrm{~V} \\ & 3 \mathrm{~V} \\ & 3 \mathrm{~V} \\ & 3 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -3 \mathrm{~V} \\ & -3 \mathrm{~V} \\ & -3 \mathrm{~V} \\ & -3 \mathrm{~V} \\ & -27 \mathrm{~V} \\ & -27 \mathrm{~V} \\ & -27 \mathrm{~V} \\ & -27 \mathrm{~V} \end{aligned}$	K1, K2 K1, K2
	PSRR	$\begin{aligned} & 25 \mathrm{~A} \\ & 25 \mathrm{~B} \\ & 25 \mathrm{C} \\ & 25 \mathrm{D} \\ & \\ & 26 \mathrm{~A} \\ & 26 \mathrm{~B} \\ & 26 \mathrm{C} \\ & 26 \mathrm{D} \end{aligned}$	0 V 0 V	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 3 \mathrm{~V} \\ & 3 \mathrm{~V} \\ & 3 \mathrm{~V} \\ & 3 \mathrm{~V} \\ & \\ & 18 \mathrm{~V} \\ & 18 \mathrm{~V} \\ & 18 \mathrm{~V} \\ & 18 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -3 \mathrm{~V} \\ & -3 \mathrm{~V} \\ & -3 \mathrm{~V} \\ & -3 \mathrm{~V} \\ & -18 \mathrm{~V} \\ & -18 \mathrm{~V} \\ & -18 \mathrm{~V} \\ & -18 \mathrm{~V} \end{aligned}$	K1, K2 K1, K2
	l SY	27	0 V	0 V	0 V	0 V	15 V	-15V	K1, K2

See footnote at end of table.

SIZE A		$5962-87771$
	REVISION LEVEL A	SHEET 16

TABLE III. Group A inspection - Continued.

Test number 1/	Measured pin			Equation	Limits		Units
	No.	Value	Units		Min	Max	
19 A	MP 1	E65	V	$\mathrm{V}_{10}=\mathrm{E} 65 / 1000$	-270	+270	$\mu \mathrm{V}$
19 B	MP 2	E66	v	$\mathrm{V}_{10}=\mathrm{E} 66 / 1000$	-270	+270	$\mu \mathrm{V}$
19 C	MP 3	E67	V	$\mathrm{V}_{10}=E 67 / 1000$	-270	+270	$\mu \mathrm{V}$
19 D	MP 4	E68	v	$\mathrm{V}_{10}=\mathrm{E} 68 / 1000$	-270	+270	$\mu \mathrm{V}$
20 A	MP 1	E69	V	$\mathrm{I}_{\mathrm{IO}}=(\mathrm{E} 69-\mathrm{E} 65) /(1000 \times 100000)$	-2.5	+2.5	nA
20 B	MP 2	E70	v	$\mathrm{l}_{1 \mathrm{O}}=(\mathrm{E} 70-\mathrm{E} 66) /(1000 \times 100000)$	-2.5	+2.5	nA
20 C	MP 3	E71	V	$\mathrm{I}_{1 O}=(E 71-\mathrm{E} 67) /(1000 \times 100000)$	-2.5	+2.5	nA
20 D	MP 4	E72	V	$\mathrm{I}_{1 \mathrm{O}}=(\mathrm{E} 72-\mathrm{E} 68) /(1000 \times 100000)$	-2.5	+2.5	nA
21 A	MP 1	E73	V	$+I_{1 B}=(E 73-E 65) /(1000 \times 100000)$	-5.0	+5.0	nA
21 B	MP 2	E74	v	$+l_{1 B}=(E 74-E 66) /(1000 \times 100000)$	-5.0	+5.0	nA
21 C	MP 3	E75	v	$+l_{\text {I }}=(E 75-\mathrm{E} 67) /(1000 \times 100000)$	-5.0	+5.0	nA
21 D	MP 4	E76	V	$+\mathrm{I}_{\mathrm{IB}}=(\mathrm{E76}-\mathrm{E} 68) /(1000 \times 100000)$	-5.0	+5.0	nA
22 A	MP 1	E77	V	$-_{1 / 2}=(E 77-E 65) /(1000 \times 100000)$	-5.0	+5.0	nA
22 B	MP 2	E78	V	$-1_{1 B}=(E 78-E 66) /(1000 \times 100000)$	-5.0	+5.0	nA
22 C	MP 3	E79	V	$-1 / 1 B^{\prime \prime}(E 79-E 67) /(1000 \times 100000)$	-5.0	+5.0	nA
22 D	MP 4	E80	V	$-1_{1 B}=(E 80-E 68) /(1000 \times 100000)$	-5.0	+5.0	nA
23 A	MP 1	E81	V	---			
23 B	MP 2	E82	V	---			
23 C	MP 3	E83	V	---			
23 D	MP 4	E84	v	---			
24 A	MP 1	E85	V	CMRR $=20$ LOG (24000)/(ABS(E81-E85))	115		dB
24 B	MP 2	E86	V	CMRR $=20$ LOG (24000)/(ABS(E82-E86))	115		dB
24 C	MP 3	E87	v	CMRR $=20$ LOG (24000)/(ABS(E83-E87))	115		dB
24 D	MP 4	E88	V	CMRR = 20 LOG (24000)/(ABS(E84-E88))	115		dB
25 A	MP 1	E89	V	---			
25 B	MP 2	E90	V	---			
25 C	MP 3	E91	V	---			
25 D	MP 4	E92	V	---			
26 A	MP 1	E93	v	PSRR $=$ ABS(E93-E89)/30000		3.2	$\mu \mathrm{V} / \mathrm{V}$
26 B	MP 2	E94	v	PSRR $=$ ABS (E94-E90)/30000		3.2	$\mu \mathrm{V} / \mathrm{V}$
26 C	MP 3	E95	V	PSRR $=$ ABS (E95-E91)/30000		3.2	$\mu \mathrm{V} / \mathrm{V}$
26 D	MP 4	E96	V	PSRR $=$ ABS (E96-E92)/30000		3.2	$\mu \mathrm{V} / \mathrm{V}$
27	P1	13	mA	$\mathrm{I}_{\mathrm{SY}}=13$		3.1	mA

See footnote at end of table.

STANDARDIZED
 MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444

SIZE A		$5962-87771$
	REVISION LEVEL A	SHEET 17

TABLE III. Group A inspection - Continued.

Subgroup number	Symbol	Test number 1/	Adapter pin number						Relays energized
			$\mathrm{V}_{\text {S1 }}$	$\mathrm{V}_{\mathrm{S} 2}$	$\mathrm{V}_{\text {S3 }}$	$\mathrm{V}_{\text {S4 }}$	P1	P2	
$\begin{gathered} 4 \\ T_{A}=+25^{\circ} \mathrm{C} \end{gathered}$	$\begin{aligned} & A_{V S} \\ & R_{L}=2 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & 28 \mathrm{~A} \\ & 28 \mathrm{~B} \\ & 28 \mathrm{C} \\ & 28 \mathrm{D} \\ & 29 \mathrm{~A} \\ & 29 \mathrm{~B} \\ & 29 \mathrm{C} \\ & 29 \mathrm{D} \end{aligned}$	$\begin{aligned} & -10 \mathrm{~V} \\ & -10 \mathrm{~V} \\ & -10 \mathrm{~V} \\ & -10 \mathrm{~V} \\ & 10 \mathrm{~V} \\ & 10 \mathrm{~V} \\ & 10 \mathrm{~V} \\ & 10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -10 \mathrm{~V} \\ & -10 \mathrm{~V} \\ & -10 \mathrm{~V} \\ & -10 \mathrm{~V} \\ & 10 \mathrm{~V} \\ & 10 \mathrm{~V} \\ & 10 \mathrm{~V} \\ & 10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -10 \mathrm{~V} \\ & -10 \mathrm{~V} \\ & -10 \mathrm{~V} \\ & -10 \mathrm{~V} \\ & 10 \mathrm{~V} \\ & 10 \mathrm{~V} \\ & 10 \mathrm{~V} \\ & 10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -10 \mathrm{~V} \\ & -10 \mathrm{~V} \\ & -10 \mathrm{~V} \\ & -10 \mathrm{~V} \\ & 10 \mathrm{~V} \\ & 10 \mathrm{~V} \\ & 10 \mathrm{~V} \\ & 10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \end{aligned}$	K1, K2, K9, K105 K1, K2, K9, K106 K1, K2, K9, K107 K1, K2, K9, K108 K1, K2, K9, K105 K1, K2, K9, K106 K1, K2, K9, K107 K1, K2, K9, K108
	$A_{V S}$$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	$\begin{aligned} & 30 \mathrm{~A} \\ & 30 \mathrm{~B} \\ & 30 \mathrm{C} \\ & 30 \mathrm{D} \end{aligned}$	$\begin{aligned} & -10 \mathrm{~V} \\ & -10 \mathrm{~V} \\ & -10 \mathrm{~V} \\ & -10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -10 \mathrm{~V} \\ & -10 \mathrm{~V} \\ & -10 \mathrm{~V} \\ & -10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -10 \mathrm{~V} \\ & -10 \mathrm{~V} \\ & -10 \mathrm{~V} \\ & -10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -10 \mathrm{~V} \\ & -10 \mathrm{~V} \\ & -10 \mathrm{~V} \\ & -10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { K1, K2, K10, K105 } \\ & \text { K1, K2, K10, K106 } \\ & \text { K1, K2, K10, K107 } \\ & \text { K1, K2, K10, K108 } \end{aligned}$
		$\begin{aligned} & 31 \mathrm{~A} \\ & 31 \mathrm{~B} \\ & 31 \mathrm{C} \\ & 31 \mathrm{D} \end{aligned}$	$\begin{aligned} & 10 \mathrm{~V} \\ & 10 \mathrm{~V} \\ & 10 \mathrm{~V} \\ & 10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 10 \mathrm{~V} \\ & 10 \mathrm{~V} \\ & 10 \mathrm{~V} \\ & 10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 10 \mathrm{~V} \\ & 10 \mathrm{~V} \\ & 10 \mathrm{~V} \\ & 10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 10 \mathrm{~V} \\ & 10 \mathrm{~V} \\ & 10 \mathrm{~V} \\ & 10 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { K1, K2, K10, K105 } \\ & \text { K1, K2, K10, K106 } \\ & \text { K1, K2, K10, K107 } \\ & \text { K1, K2, K10, K108 } \end{aligned}$
	$\begin{aligned} & \mathrm{V}_{\mathrm{OP}} \\ & \mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & 32 \mathrm{~A} \\ & 32 \mathrm{~B} \\ & 32 \mathrm{C} \\ & 32 \mathrm{D} \end{aligned}$	$\begin{aligned} & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \end{aligned}$	K1, K2, K9, K105 K1, K2, K9, K106 K1, K2, K9, K107 K1, K2, K9, K108
		$\begin{aligned} & 33 \mathrm{~A} \\ & 33 \mathrm{~B} \\ & 33 \mathrm{C} \\ & 33 \mathrm{D} \end{aligned}$	$\begin{aligned} & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \end{aligned}$	K1, K2, K9, K105 K1, K2, K9, K106 K1, K2, K9, K107 K1, K2, K9, K108
	$\begin{aligned} & \mathrm{V}_{\mathrm{OP}} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & 34 \mathrm{~A} \\ & 34 \mathrm{~B} \\ & 34 \mathrm{C} \\ & 34 \mathrm{D} \end{aligned}$	$\begin{aligned} & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { K1, K2, K10, K105 } \\ & \text { K1, K2, K10, K106 } \\ & \text { K1, K2, K10, K107 } \\ & \text { K1, K2, K10, K108 } \end{aligned}$
		$\begin{aligned} & 35 \mathrm{~A} \\ & 35 \mathrm{~B} \\ & 35 \mathrm{C} \\ & 35 \mathrm{D} \end{aligned}$	$\begin{aligned} & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { K1, K3, K10, K105 } \\ & \text { K1, K3, K10, K106 } \\ & \text { K1, K3, K10, K107 } \\ & \text { K1, K3, K10, K108 } \end{aligned}$

See footnote at end of table.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444

SIZE A		$5962-87771$
	REVISION LEVEL A	SHEET 18

TABLE III. Group A inspection - Continued.

Test number 1/	Measured pin			Equation	Limits		Units
	No.	Value	Units		Min	Max	
28 A	MP 5	E97	V	---			
28 B	MP 6	E98	V	---			
28 C	MP 7	E99	V	---			
28 D	MP 8	E100	V	---			
29 A	MP 5	E101	V	AVS $=20000 /($ ABS (E97-E101) $)$	2000		V / mV
29 B	MP 6	E102	V	AVS $=20000 /(A B S(E 98-E 102))$	2000		V / mV
29 C	MP 7	E103	V	AVS $=20000 /(\operatorname{ABS}(\mathrm{E99}-\mathrm{E} 103))$	2000		V / mV
29 D	MP 8	E104	V	AVS $=20000 /($ ABS (E100-E104))	2000		V / mV
30 A	MP 5	E105	V	---			
30 B	MP 6	E106	V	---			
30 C	MP 7	E107	V	---			
30 D	MP 8	E108	V	---			
31 A	MP 5	E109	V	AVS $=20000 /($ ABS (E105-E109))	5000		V
31 B	MP 6	E110	V	AVS $=20000 /($ ABS (E106-E110))	5000		V
31 C	MP 7	E111	V	AVS $=20000 /($ ABS (E107-E111))	5000		V
31 D	MP 8	E112	V	AVS $=20000 /(\operatorname{ABS}(\mathrm{E} 108-\mathrm{E} 112))$	5000		V
32 A	MP 5	E113	V	$+\mathrm{V}_{\text {OP }}=\mathrm{E} 113$	11		V
32 B	MP 6	E114	V	$+\mathrm{V}_{\text {OP }}=\mathrm{E} 114$	11		V
32 C	MP 7	E115	V	$+\mathrm{V}_{\text {OP }}=\mathrm{E} 115$	11		V
32 D	MP 8	E116	V	$+\mathrm{V}_{\text {OP }}=\mathrm{E} 116$	11		V
33 A	MP 5	E117	V	$-\mathrm{V}_{\mathrm{OP}}=\mathrm{E} 117$		-11	V
33 B	MP 6	E118	V	$-\mathrm{V}_{\text {OP }}=\mathrm{E} 118$		-11	V
33 C	MP 7	E119	V	$-\mathrm{V}_{\mathrm{OP}}=\mathrm{E} 119$		-11	V
33 D	MP 8	E120	V	$-\mathrm{V}_{\mathrm{OP}}=\mathrm{E} 120$		-11	V
34 A	MP 5	E121	V	$+\mathrm{V}_{\text {OP }}=\mathrm{E} 121$	12		V
34 B	MP 6	E122	V	$+\mathrm{V}_{\text {OP }}=\mathrm{E} 122$	12		V
34 C	MP 7	E123	V	$+\mathrm{V}_{\mathrm{OP}}=\mathrm{E} 123$	12		V
34 D	MP 8	E124	V	$+\mathrm{V}_{\text {OP }}=\mathrm{E} 124$	12		V
35 A	MP 5	E125	V	$-\mathrm{V}_{\mathrm{OP}}=\mathrm{E} 125$		-12	V
35 B	MP 6	E126	V	$-\mathrm{V}_{\mathrm{OP}}=\mathrm{E} 126$		-12	V
35 C	MP 7	E127	V	$-\mathrm{V}_{\text {OP }}=\mathrm{E} 127$		-12	V
35 D	MP 8	E128	V	$-\mathrm{V}_{\mathrm{OP}}=\mathrm{E} 128$		-12	V

See footnote at end of table.

SIZE A		$5962-87771$
	REVISION LEVEL A	SHEET 19

TABLE III. Group A inspection - Continued.

Subgroup number	Symbol	Test number 1/	Adapter pin number						Relays energized
			$\mathrm{v}_{\text {S1 }}$	$\mathrm{v}_{\mathrm{S} 2}$	$\mathrm{v}_{\mathrm{S} 3}$	$\mathrm{v}_{\text {S } 4}$	P1	P2	
$\begin{aligned} & 5 \\ & T_{A}=+125^{\circ} \mathrm{C} \end{aligned}$	Avs$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	36 A	-10 V	-10 V	-10 V	-10 V	15 V	-15V	K1, K2, K9, K105
		36 B	-10 V	-10 V	-10 V	-10 V	15 V	-15V	K1, K2, K9, K106
		36 C	-10 V	-10 V	-10 V	-10 V	15 V	-15V	K1, K2, K9, K107
		36 D	-10 V	-10 V	-10 V	-10 V	15 V	-15V	K1, K2, K9, K108
		37 A	10 V	10 V	10 V	10 V	15 V	-15V	K1, K2, K9, K105
		37 B	10 V	10 V	10 V	10 V	15 V	-15V	K1, K2, K9, K106
		37 C	10 V	10 V	10 V	10 V	15 V	-15V	K1, K2, K9, K107
		37 D	10 V	10 V	10 V	10 V	15 V	-15V	K1, K2, K9, K108
	$\begin{aligned} & A_{V S} \\ & R_{L}=10 \mathrm{k} \Omega \end{aligned}$	38 A	-10 V	-10 V	$-10 \mathrm{~V}$	-10 V	15 V	-15V	K1, K2, K10, K105
		38 B	-10 V	-10 V	-10 V	-10 V	15 V	-15V	K1, K2, K10, K106
		38 C	-10 V	-10 V	-10 V	-10 V	15 V	-15V	K1, K2, K10, K107
		38 D	-10 V	-10 V	-10 V	-10 V	15 V	-15V	K1, K2, K10, K108
		39 A	10 V	10 V	10 V	10 V	15 V	-15V	K1, K2, K10, K105
		39 B	10 V	10 V	10 V	10 V	15 V	-15V	K1, K2, K10, K106
		39 C	10 V	10 V	10 V	10 V	15 V	-15V	K1, K2, K10, K107
		39 D	10 V	10 V	10 V	10 V	15 V	-15V	K1, K2, K10, K108
	$\mathrm{V}_{\mathrm{OP}}$$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	40 A	-15 V	-15V	-15V	-15V	15 V	-15V	K1, K2, K9, K105
		40 B	-15V	-15V	-15V	-15V	15 V	-15V	K1, K2, K9, K106
		40 C	-15 V	-15V	-15V	-15V	15 V	-15V	K1, K2, K9, K107
		40 D	-15V	-15V	-15V	-15V	15 V	-15V	K1, K2, K9, K108
		41 A	15 V	-15V	K1, K2, K9, K105				
		41 B	15 V	-15V	K1, K2, K9, K106				
		41 C	15 V	-15V	K1, K2, K9, K107				
		41 D	15 V	-15V	K1, K2, K9, K108				
	$\begin{aligned} & \mathrm{V}_{\mathrm{OP}} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	42 A	-15V	-15V	-15V	-15V	15 V	-15V	K1, K2, K10, K105
		42 B	-15V	-15V	-15V	-15V	15 V	-15V	K1, K2, K10, K106
		42 C	-15V	-15V	-15V	-15V	15 V	-15V	K1, K2, K10, K107
		42 D	-15V	-15V	-15V	-15V	15 V	-15V	K1, K2, K10, K108
		43 A	15 V	15 V	15 V	10 V	15 V	-15V	K1, K2, K10, K105
		43 B	15 V	15 V	15 V	10 V	15 V	-15V	K1, K2, K10, K106
		43 C	15 V	15 V	15 V	10 V	15 V	-15V	K1, K2, K10, K107
		43 D	15 V	15 V	15 V	10 V	15 V	-15V	K1, K2, K10, K108

See footnote at end of table.

SIZE A		$5962-87771$
	REVISION LEVEL A	SHEET 20

TABLE III. Group A inspection - Continued.

Test number 1/	Measured pin			Equation	Limits		Units
	No.	Value	Units		Min	Max	
36 A	MP 5	E129	V	---			
36 B	MP 6	E130	V	---			
36 C	MP 7	E131	V	---			
36 D	MP 8	E132	V	---			
37 A	MP 5	E133	V	AVS $=20000 /($ ABS (E129-E133))	1000		V / mV
37 B	MP 6	E134	V	AVS $=20000 /($ ABS (E130-E134))	1000		V / mV
37 C	MP 7	E135	V	AVS $=20000 /($ ABS (E131-E135))	1000		V / mV
37 D	MP 8	E136	V	AVS $=20000 /(\operatorname{ABS}(\mathrm{E} 132-\mathrm{E} 136))$	1000		V / mV
38 A	MP 5	E137	V	---			
38 B	MP 6	E138	V	---			
38 C	MP 7	E139	V	---			
38 D	MP 8	E140	V	---			
39 A	MP 5	E141	V	AVS $=20000 /($ ABS $(E 137-E 141))$	3000		V / mV
39 B	MP 6	E142	V	AVS $=20000 /($ ABS (E138-E142))	3000		V / mV
39 C	MP 7	E143	V	AVS $=20000 /($ ABS (E139-E143))	3000		V / mV
39 D	MP 8	E144	V	AVS $=20000 /($ ABS (E140-E144))	3000		V / mV
40 A	MP 5	E145	V	$+\mathrm{V}_{\text {OP }}=\mathrm{E} 145$	11		V
40 B	MP 6	E146	V	$+\mathrm{V}_{\text {OP }}=\mathrm{E} 146$	11		V
40 C	MP 7	E147	V	$+\mathrm{V}_{\text {OP }}=\mathrm{E} 147$	11		V
40 D	MP 8	E148	V	$+\mathrm{V}_{\text {OP }}=\mathrm{E} 148$	11		V
41 A	MP 5	E149	V	$-\mathrm{V}_{\mathrm{OP}}=\mathrm{E} 149$		-11	V
41 B	MP 6	E150	V	$-\mathrm{V}_{\text {OP }}=\mathrm{E} 150$		-11	V
41 C	MP 7	E151	V	$-\mathrm{V}_{\mathrm{OP}}=\mathrm{E} 151$		-11	V
41 D	MP 8	E152	V	$-\mathrm{V}_{\mathrm{OP}}=\mathrm{E} 152$		-11	V
42 A	MP 5	E153	V	$+\mathrm{V}_{\text {OP }}=\mathrm{E} 153$	12		V
42 B	MP 6	E154	V	$+\mathrm{V}_{\text {OP }}=\mathrm{E} 154$	12		V
42 C	MP 7	E155	V	$+\mathrm{V}_{\text {OP }}=\mathrm{E} 155$	12		V
42 D	MP 8	E156	V	$+\mathrm{V}_{\text {OP }}=\mathrm{E} 156$	12		V
43 A	MP 5	E157	V	$-\mathrm{V}_{\mathrm{OP}}=\mathrm{E} 157$		-12	V
43 B	MP 6	E158	V	$-\mathrm{V}_{\text {OP }}=\mathrm{E} 158$		-12	V
43 C	MP 7	E159	V	$-\mathrm{V}_{\mathrm{OP}}=\mathrm{E} 159$		-12	V
43 D	MP 8	E160	V	$-\mathrm{V}_{\mathrm{OP}}=\mathrm{E} 160$		-12	V

See footnote at end table.

SIZE A		$5962-87771$
	REVISION LEVEL A	SHEET 21

TABLE III. Group A inspection - Continued.

Subgroup number	Symbol	Test number 1/	Adapter pin number						Relays energized
			$\mathrm{v}_{\text {S1 }}$	$\mathrm{v}_{\mathrm{S} 2}$	$\mathrm{V}_{\text {S3 }}$	$\mathrm{v}_{\text {S }}$	P1	P2	
$\begin{gathered} 6 \\ T_{A}=-55^{\circ} \mathrm{C} \end{gathered}$	Avs$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	44 A	-10 V	-10 V	$-10 \mathrm{~V}$	-10 V	15 V	-15V	K1, K2, K9, K105
		44 B	-10 V	-10 V	-10 V	-10 V	15 V	-15V	K1, K2, K9, K106
		44 C	-10 V	-10 V	-10 V	-10 V	15 V	-15V	K1, K2, K9, K107
		44 D	-10 V	-10 V	-10 V	-10 V	15 V	-15V	K1, K2, K9, K108
		45 A	10 V	10 V	10 V	10 V	15 V	-15V	K1, K2, K9, K105
		45 B	10 V	10 V	10 V	10 V	15 V	-15V	K1, K2, K9, K106
		45 C	10 V	10 V	10 V	10 V	15 V	-15 V	K1, K2, K9, K107
		45 D	10 V	10 V	10 V	10 V	15 V	-15V	K1, K2, K9, K108
	$A_{\text {VS }}$$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega$	46 A	-10 V	-10 V	-10 V	-10 V	15 V	-15V	K1, K2, K10, K105
		46 B	-10 V	-10 V	-10 V	-10 V	15 V	-15V	K1, K2, K10, K106
		46 C	-10 V	-10 V	$-10 \mathrm{~V}$	-10 V	15 V	-15V	K1, K2, K10, K107
		46 D	-10 V	-10 V	-10 V	-10 V	15 V	-15V	K1, K2, K10, K108
		47 A	10 V	10 V	10 V	10 V	15 V	-15V	K1, K2, K10, K105
		47 B	10 V	10 V	10 V	10 V	15 V	-15V	K1, K2, K10, K106
		47 C	10 V	10 V	10 V	10 V	15 V	-15V	K1, K2, K10, K107
		47 D	10 V	10 V	10 V	10 V	15 V	-15V	K1, K2, K10, K108
	$\mathrm{V}_{\mathrm{OP}}$$\mathrm{R}_{\mathrm{L}}=2 \mathrm{k} \Omega$	48 A	-15V	-15V	-15V	-15V	15 V	-15V	K1, K2, K9, K105
		48 B	-15V	-15 V	-15V	-15V	15 V	-15V	K1, K2, K9, K106
		48 C	-15V	-15V	-15V	-15V	15 V	-15V	K1, K2, K9, K107
		48 D	-15V	-15 V	-15V	-15V	15 V	-15V	K1, K2, K9, K108
		49 A	15 V	-15V	K1, K2, K9, K105				
		49 B	15 V	-15V	K1, K2, K9, K106				
		49 C	15 V	-15V	K1, K2, K9, K107				
		49 D	15 V	-15V	K1, K2, K9, K108				
	$\begin{aligned} & \mathrm{V}_{\mathrm{OP}} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \end{aligned}$	50 A	-15V	-15 V	-15V	-15V	15 V	-15V	K1, K2, K10, K105
		50 B	-15V	-15 V	-15V	-15V	15 V	-15V	K1, K2, K10, K106
		50 C	-15V	-15V	-15V	-15V	15 V	-15V	K1, K2, K10, K107
		50 D	-15V	-15 V	-15V	-15V	15 V	-15V	K1, K2, K10, K108
		51 A	15 V	-15V	K1, K2, K10, K105				
		51 B	15 V	-15V	K1, K2, K10, K106				
		51 C	15 V	-15V	K1, K2, K10, K107				
		51 D	15 V	-15V	K1, K2, K10, K108				

See footnote at end of table.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444

SIZE A		$5962-87771$
	REVISION LEVEL A	SHEET

TABLE III. Group A inspection - Continued.

Test number 1/	Measured pin			Equation	Limits		Units
	No.	Value	Units		Min	Max	
44 A	MP 5	E161	V	---			
44 B	MP 6	E162	V	---			
44 C	MP 7	E163	V	---			
44 D	MP 8	E164	V	---			
45 A	MP 5	E165	V	AVS $=20000 /(\operatorname{ABS}(\mathrm{E} 161-\mathrm{E} 165))$	1000		V / mV
45 B	MP 6	E166	V	AVS $=20000 /($ ABS (E162-E166))	1000		V / mV
45 C	MP 7	E167	V	AVS $=20000 /($ ABS (E163-E167))	1000		V / mV
45 D	MP 8	E168	V	AVS $=20000 /($ ABS (E164 - E168))	1000		V / mV
46 A	MP 5	E169	V	---			
46 B	MP 6	E170	V	---			
46 C	MP 7	E171	V	---			
46 D	MP 8	E172	V	---			
47 A	MP 5	E173	V	AVS $=20000 /(\mathrm{ABS}(\mathrm{E} 169-\mathrm{E} 173)$)	3000		V / mV
47 B	MP 6	E174	V	AVS $=20000 /($ ABS (E170 - E174))	3000		V / mV
47 C	MP 7	E175	V	AVS $=20000 /($ ABS (E171 - E175))	3000		V / mV
47 D	MP 8	E176	V	AVS $=20000 /(\operatorname{ABS}(\mathrm{E} 172-\mathrm{E} 176))$	3000		V / mV
48 A	MP 5	E177	V	$+\mathrm{V}_{\text {OP }}=\mathrm{E} 177$	11		V
48 B	MP 6	E178	V	$+\mathrm{V}_{\text {OP }}=\mathrm{E} 178$	11		V
48 C	MP 7	E179	V	$+\mathrm{V}_{\text {OP }}=\mathrm{E} 179$	11		V
48 D	MP 8	E180	V	$+\mathrm{V}_{\text {OP }}=\mathrm{E} 180$	11		V
49 A	MP 5	E181	V	$-\mathrm{V}_{\mathrm{OP}}=\mathrm{E} 181$		-11	V
49 B	MP 6	E182	V	$-\mathrm{V}_{\text {OP }}=\mathrm{E} 182$		-11	V
49 C	MP 7	E183	V	$-\mathrm{V}_{\text {OP }}=\mathrm{E} 183$		-11	V
49 D	MP 8	E184	V	$-\mathrm{V}_{\mathrm{OP}}=\mathrm{E} 184$		-11	V
50 A	MP 5	E185	V	$+\mathrm{V}_{\text {OP }}=\mathrm{E} 185$			
50 B	MP 6	E186	V	$+\mathrm{V}_{\text {OP }}=\mathrm{E} 186$	12		V
50 C	MP 7	E187	V	$+\mathrm{V}_{\text {OP }}=\mathrm{E} 187$	12		V
50 D	MP 8	E188	V	$+\mathrm{V}_{\text {OP }}=\mathrm{E} 188$	12		V
51 A	MP 5	E189	V	$-\mathrm{V}_{\mathrm{OP}}=\mathrm{E} 189$		-12	V
51 B	MP 6	E190	V	$-\mathrm{V}_{\text {OP }}=\mathrm{E} 190$		-12	V
51 C	MP 7	E191	V	$-\mathrm{V}_{\text {OP }}=\mathrm{E} 191$		-12	V
51 D	MP 8	E192	V	$-\mathrm{V}_{\mathrm{OP}}=\mathrm{E} 192$		-12	V

See footnote at end of table.

STANDARDIZED			
MILITARY DRAWING			
DEFENSE ELECTRONICS SUPPLY CENTER			
DAYTON, OHIO 45444	SIZE		$5962-87771$
	A		

TABLE III. Group A inspection - Continued.

Subgroup number	Symbol	Test number 1/	Adapter pin number						Relays energized
			$\mathrm{V}_{\text {S1 }}$	$\mathrm{V}_{\mathrm{S} 2}$	$\mathrm{V}_{\text {S3 }}$	$\mathrm{V}_{\mathrm{S} 4}$	P1	P2	
$\begin{gathered} 7 \\ T_{A}=+25^{\circ} \mathrm{C} \end{gathered}$	$\mathrm{e}_{\text {NT }}$	$\begin{aligned} & 52 \mathrm{~A} \\ & 52 \mathrm{~B} \\ & 52 \mathrm{C} \\ & 52 \mathrm{D} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \end{aligned}$	
	SR+ SR-	$\begin{aligned} & 53 \mathrm{~A} \\ & 53 \mathrm{~B} \\ & 53 \mathrm{C} \\ & 53 \mathrm{D} \\ & 54 \mathrm{~A} \\ & 54 \mathrm{~B} \\ & 54 \mathrm{C} \\ & 54 \mathrm{D} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \\ & 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \\ & 15 \mathrm{~V} \end{aligned}$	$\begin{aligned} & -15 \mathrm{~V} \\ & -15 \mathrm{~V} \end{aligned}$	K1, K5, K6, K13 and K101, K105 and K102, K106 and K103, K107 and K104, K108 and K101, K105 and K102, K106 and K103, K107 and K104, K108
$\begin{gathered} 8 \\ T_{A}=+125^{\circ} \mathrm{C} \end{gathered}$	$\mathrm{TC}_{\text {VIO }}$	$\begin{aligned} & 55 \mathrm{~A} \\ & 55 \mathrm{~B} \\ & 55 \mathrm{C} \\ & 55 \mathrm{D} \end{aligned}$	Temperature coefficient is calculated using the V_{IO} readings from subgroups 1 and 2.						
$\begin{gathered} 8 \\ T_{A}=-55^{\circ} \mathrm{C} \end{gathered}$	$\mathrm{TC}_{\text {VIO }}$	$\begin{aligned} & 56 \mathrm{~A} \\ & 56 \mathrm{~B} \\ & 56 \mathrm{C} \\ & 56 \mathrm{D} \end{aligned}$	Temperature coefficient is calculated using the V_{IO} readings from subgroups 1 and 3.						

See footnote at end of table.

SIZE A		$5962-87771$
	REVISION LEVEL A	SHEET 24

TABLE III. Group A inspection - Continued.

Test number 1/	Measured pin			Equation	Limits		Units	
	No.	Value	Units		Min	Max		
$\begin{aligned} & 52 \mathrm{~A} \\ & 52 \mathrm{~B} \\ & 52 \mathrm{C} \\ & 52 \mathrm{D} \end{aligned}$		$\begin{aligned} & \text { E193 } \\ & \text { E194 } \\ & \text { E195 } \\ & \text { E196 } \end{aligned}$	$\begin{aligned} & V \\ & V \\ & V \\ & V \end{aligned}$			$\begin{aligned} & 438 \\ & 438 \\ & 438 \\ & 438 \end{aligned}$	nV rms nV rms nV rms nV rms	
$\begin{aligned} & 53 \mathrm{~A} \\ & 53 \mathrm{~B} \\ & 53 \mathrm{C} \\ & 53 \mathrm{D} \\ & 54 \mathrm{~A} \\ & 54 \mathrm{~B} \\ & 54 \mathrm{C} \\ & 54 \mathrm{D} \end{aligned}$	Timr Timr	$\begin{aligned} & t_{1} \\ & t_{2} \\ & t_{3} \\ & t_{4} \\ & t_{5} \\ & t_{6} \\ & t_{7} \\ & t_{8} \end{aligned}$	$\mu \mathrm{s}$ $\mu \mathrm{s}$	$\begin{aligned} & 5 / \mathrm{t}_{1} \\ & 5 / \mathrm{t}_{2} \\ & 5 / \mathrm{t}_{3} \\ & 5 / \mathrm{t}_{4} \\ & 5 / \mathrm{t}_{5} \\ & 5 / \mathrm{t}_{6} \\ & 5 / \mathrm{t}_{7} \\ & 5 / \mathrm{t}_{8} \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$		$\mathrm{V} / \mathrm{\mu s}$ V/us $\mathrm{V} / \mu \mathrm{s}$ $\mathrm{V} / \mu \mathrm{s}$ V/ $\mu \mathrm{s}$ $\mathrm{V} / \mu \mathrm{s}$ $\mathrm{V} / \mu \mathrm{s}$ $\mathrm{V} / \mu \mathrm{s}$	
$\begin{aligned} & 55 \mathrm{~A} \\ & 55 \mathrm{~B} \\ & 55 \mathrm{C} \\ & 55 \mathrm{D} \end{aligned}$				$\begin{aligned} & \left(\mathrm{E} 1-\text { E33 at }+125^{\circ} \mathrm{C}\right) / 100 \\ & \left(\mathrm{E} 1-\mathrm{E} 34 \text { at }+125^{\circ} \mathrm{C}\right) / 100 \\ & \left(\mathrm{E} 1-\mathrm{E} 35 \text { at }+125^{\circ} \mathrm{C}\right) / 100 \\ & \left(\mathrm{E} 1-\mathrm{E} 36 \text { at }+125^{\circ} \mathrm{C}\right) / 100 \end{aligned}$		$\begin{aligned} & 1.2 \\ & 1.2 \\ & 1.2 \\ & 1.2 \end{aligned}$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	
$\begin{aligned} & 56 \mathrm{~A} \\ & 56 \mathrm{~B} \\ & 56 \mathrm{C} \\ & 56 \mathrm{D} \end{aligned}$				$\begin{aligned} & \left(\mathrm{E} 1-\mathrm{E} 65 \text { at }-55^{\circ} \mathrm{C}\right) / 80 \\ & \left(\mathrm{E} 1-\mathrm{E} 66 \text { at }-55^{\circ} \mathrm{C}\right) / 80 \\ & \left(\mathrm{E} 1-\mathrm{E} 67 \text { at }-55^{\circ} \mathrm{C}\right) / 80 \\ & \left(\mathrm{E} 1-\mathrm{E} 68 \text { at }-55^{\circ} \mathrm{C}\right) / 80 \end{aligned}$		$\begin{aligned} & 1.2 \\ & 1.2 \\ & 1.2 \\ & 1.2 \end{aligned}$	$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$ $\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$	

1/ Unless otherwise specified, all tests apply to figures 4 and 5.

SIZE A		$5962-87771$
	REVISION LEVEL A	SHEET 25

NOTES:

1. Burn-in voltage tolerances are $\pm .2 \mathrm{~V}$.
2. All resistors are metal film with ± 1 percent tolerance.

FIGURE 3. Burn-in and steady-state life test circuit.

SIZE A		$5962-87771$
	REVISION LEVEL A	SHEET 26

NOTE: All resistors are metal film with ± 1 percent tolerance.

FIGURE 4. Dynamic burn-in test circuit.

FIGURE 5. Static and dynamic test circuit.

SIZE A		$5962-87771$
	REVISION LEVEL A	SHEET 28

4.4.3.1 Additional criteria for device classes M, B, and S. Steady-state life test conditions, method 1005 of MIL-STD-883:
a. Test condition A, B, C, or D. For device class M, the test circuit shall be submitted to DESC-ECS for review with the certificate of compliance. For device classes B and S , the test circuit shall be submitted to the qualifying activity.
b. $\quad \mathrm{T}_{\mathrm{A}}=+125^{\circ} \mathrm{C}$, minimum.
c. Test duration: 1,000 hours, except as permitted by method 1005 of MIL-STD-883.
4.4.3.2 Additional criteria for device classes Q and V . The steady-state life test duration, test condition and test temperature or approved alternatives shall be as specified in the device manufacturer's QM plan in accordance with MIL-I-38535. The steady-state life test circuit shall be submitted to DESC-ECS with the certificate of compliance and shall be under the control of the device manufacturer's TRB in accordance with MIL-I-38535.
4.4.4 Group D inspection. The group D inspection end-point electrical parameters shall be as specified in table IIA herein.
4.4.5 Group E inspection. Group E inspection is required only for parts intended to be marked as radiation hardness assured (see 3.5 herein). RHA levels for device classes B and S shall be M, D, R, and H and for device class M shall be M and D. RHA quality conformance inspection sample tests shall be performed at the RHA level specified in the acquisition document.
a. RHA tests for device classes B and S for levels M, D, R, and H or for device class M for levels M and D shall be performed through each level to determine at what levels the devices meet the RHA requirements. These RHA tests shall be performed for initial qualification and after design or process changes which may affect the RHA performance of the device.
b. End-point electrical parameters shall be as specified in table IIA herein.
c. Prior to total dose irradiation, each selected sample shall be assembled in its qualified package. It shall pass the specified group A electrical parameters in table I for subgroups specified in table IIA herein.
d. For device classes M, B, and S, the devices shall be subjected to radiation hardness assured tests as specified in MIL-M- 38510 for RHA level being tested, and meet the postirradiation end-point electrical parameter limits as defined in table I at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \pm 5$ percent, after exposure.
e. Prior to and during total dose irradiation testing, the devices shall be biased to establish a worst case condition as specified in the radiation exposure circuit.
f. For device classes M, B, and S, subgroups 1 and 2 in table V, method 5005 of MIL-STD-883 shall be tested as appropriate for device construction.
g. When specified in the purchase order or contract, a copy of the RHA delta limits shall be supplied.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444

SIZE A		$5962-87771$
	REVISION LEVEL A	SHEET 29

5. PACKAGING

5.1 Packaging requirements. The requirements for packaging shall be in accordance with MIL-M-38510 for device classes M , B, and S and MIL-I-38535 for device classes Q and V.

6. NOTES

6.1 Intended use. Microcircuits conforming to this drawing are intended for use for Government microcircuit applications (original equipment), design applications, and logistics purposes.
6.1.1 Replaceability. Microcircuits covered by this drawing will replace the same generic device covered by a contractor-prepared specification or drawing.

6.1.2 Substitutability. Device classes B and Q devices will replace device class M devices.

6.2 Configuration control of SMD's. All proposed changes to existing SMD's will be coordinated with the users of record for the individual documents. This coordination will be accomplished in accordance with MIL-STD-481 using DD Form 1693, Engineering Change Proposal (Short Form).
6.3 Record of users. Military and industrial users shall inform Defense Electronics Supply Center when a system application requires configuration control and which SMD's are applicable to that system. DESC will maintain a record of users and this list will be used for coordination and distribution of changes to the drawings. Users of drawings covering microelectronic devices (FSC 5962) should contact DESC-ECS, telephone (513) 296-6022.
6.4 Comments. Comments on this drawing should be directed to DESC-ECS, Dayton, Ohio 45444, or telephone (513) 296-5375.

6.5 Symbols, definitions, and functional descriptions.

6.6 One part - one part number system. The one part - one part number system described below has been developed to allow for transitions between identical generic devices covered by the four major microcircuit requirements documents (MIL-M-38510, MIL-H-38534, MIL-I-38535, and 1.2.1 of MIL-STD-883) without the necessity for the generation of unique PIN's. The four military requirements documents represent different class levels, and previously when a device manufacturer upgraded military product from one class level to another, the benefits of the upgraded product were unavailable to the Original Equipment Manufacturer (OEM), that was contractually locked into the original unique PIN. By establishing a one part number system covering all four documents, the OEM can acquire to the highest class level available for a given generic device to meet system needs without modifying the original contract parts selection criteria.

Military documentation format

New MIL-M-38510 Military Detail Specifications (in the SMD format)

Example PIN under new system	Manufacturing source listing	Document listing
5962-XXXXXZZ(B or S)YY	QPL-38510 (Part 1 or 2)	MIL-BUL-103
5962-XXXXXZZ(H or K)YY	QML-38534	MIL-BUL-103
5962-XXXXXZZ(Q or V)YY	QML-38535	MIL-BUL-103
5962-XXXXXZZ(M)YY	MIL-BUL-103	MIL-BUL-103

New 1.2.1 of MIL-STD-883 Standardized 5962-XXXXXZZ(M)YY MIL-BUL-103 MIL-BUL-103
Military Drawings

6.7 Sources of supply.

6.7.1 Sources of supply for device classes B and S. Sources of supply for device classes B and S are listed in QPL-38510.
6.7.2 Sources of supply for device classes Q and V. Sources of supply for device classes Q and V are listed in QML-38535. The vendors listed in QML-38535 have submitted a certificate of compliance (see 3.6 herein) to DESC-ECS and have agreed to this drawing.
6.7.3 Approved sources of supply for device class M. Approved sources of supply for class M are listed in MIL-BUL-103. The vendors listed in MIL-BUL-103 have agreed to this drawing and a certificate of compliance (see 3.6 herein) has been submitted to and accepted by DESC-ECS.

STANDARDIZED MILITARY DRAWING DEFENSE ELECTRONICS SUPPLY CENTER DAYTON, OHIO 45444

SIZE \mathbf{A}		$5962-87771$
	REVISION LEVEL A	SHEET 30

DESC FORM 193A
JUL 91

APPENDIX

SUBSTITUTION DATA

10. SCOPE
10.1 Scope. This appendix contains the PIN substitution information to support the one part-one part number system. For new system designs, after the date of this document the new PIN shall be used in lieu of the old PIN. For existing system designs prior to the date of this document the new PIN can be used in lieu of the old PIN. This is a mandatory part of the document. The information herein is intended for compliance. The PIN substitution data shall be as follows:
11. APPLICABLE DOCUMENTS. This section is not applicable to this appendix.
12. SUBSTITUTION DATA

New PIN
5962-8777101MCX
5962-8777101M3X

Old PIN

5962-8777101CX
5962-87771013X

STANDARDIZED MILITARY DRAWING	SIZE A		$5962-87771$
ELECTRONICS SUPPLY CENTER		REVISION LEVEL	SHEET DAYTON, OHIO 45444

DATE: 91-12-11
Approved sources of supply for SMD 5962-87771 are listed below for immediate acquisition only and shall be added to MIL-BUL-103 during the next revision. MIL-BUL-103 will be revised to include the addition or deletion of sources. The vendors listed below have agreed to this drawing and a certificate of compliance has been submitted to and accepted by DESC-ECS. This bulletin is superseded by the next dated revision of MIL-BUL-103.

Standardized military drawing PIN	Vendor CAGE number	Vendor similar PIN 1/
5962-8777101MCX	06665	OP400AY/883
5962-8777101M3X	06665	OP400ATC/883

1/ Caution. Do not use this number for item acquisition. Items acquired to this number may not satisfy the performance requirements of this drawing.

Vendor CAGE number	Vendor name and address

06665 Analog Devices
Precision Monolithics Division
1500 Space Park Drive
P.O. Box 58020

Santa Clara, CA. 95050

The cross-reference information below is presented for the convenience of users. Microcircuits covered by SMD 596287771 will functionally replace the listed generic-industry type. Generic-industry microcircuit types may not have equivalent operational performance characteristics across military temperature ranges, postirradiation performance, or reliability factors equivalent to the listed SMD device types and may have slight physical variations in relation to case size. The presence of this information shall not be deemed as permitting substitution of generic-industry types for SMD types or as a waiver of any of the provisions of the applicable general specification.

Standardized military drawing PIN	Generic- industry PIN
$5962-8777101 \mathrm{BCX}$	OP400AY
5962-8777101B3X	OP400ATC
$5962-8777101 \mathrm{SCX}$	OP400AY
$5962-8777101 \mathrm{~S} 3 \mathrm{X}$	OP400ATC

[^0]
[^0]: The information contained herein is disseminated for convenience only and | the Government assumes no liability whatsoever for any inaccuracies in this information bulletin.

