





# Politechnika Śląska jako Centrum Nowoczesnego Kształcenia opartego o badania i innowacje

POWR.03.05.00-IP.08-00-PZ1/17

Projekt współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego

#### Microprocessor and Embedded Systems

Faculty of Automatic Control, Electronics and Computer Science, Informatics, Bachelor Degree

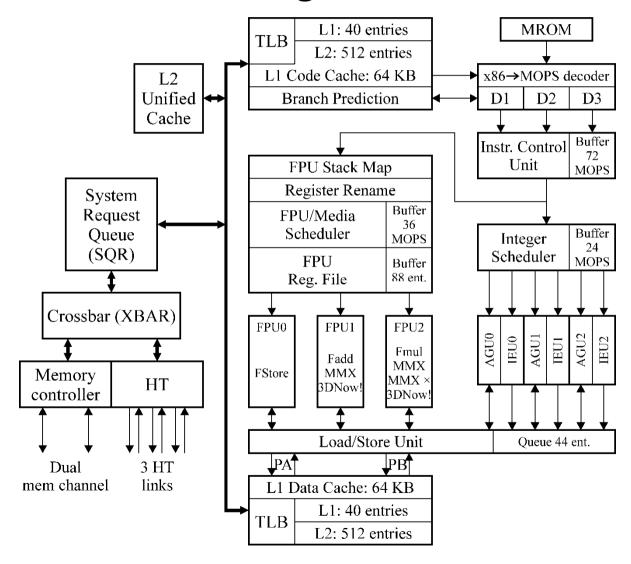
#### Lecture 10

# 64-bit microprocessors AMD Athlon 64

Bartłomiej Zieliński, PhD, DSc

#### Program:

- Genesis of 64-b processors
- AMD Athlon
  - Main properties
  - Structure
  - Operating modes
- HyperTransport bus
  - System architecture
  - Signalling
  - Data packet communication


- Genesis of 64-b processing
  - Goal:
    - μp for highly efficient workstations and servers
  - Two ways:
    - AMD: evolution
      - Extension of x86 architecture
    - Intel: revolution
      - Completely new (but interesting) architecture

- Discussion on AMD approach
  - μp for highly efficient workstations and servers
    - In a simplified form for "usual" PCs
  - Assumptions
    - x86 has limitations, but proper development can remove or omit them
    - Backward compatibility with hard- and software is a great advantage
    - Existing code should be executed with maximum possible performance (no 64-b programs)
    - A typical user may need 64-b PC to efficiently manage memory >4 GB

- Discussion on Intel approach
  - μp for highly efficient workstations and servers
  - Assumptions
    - x86 has limitations
      - Backward compatibility complicates μp structure and operation
      - Backward compatibility makes modifications difficult
    - Highly efficient μp don't have to execute existing code with maximum performance
      - There will be optimised code for 64-b  $\mu p's$
    - Typical user does not need 64-b processing
  - → IA-64 does not even resemble x86

- Athlon 64 main properties
  - Structure similar to 32-b Athlon
  - Built-in DDRAM controller
  - HyperTransport bus
  - 64-b operating modes
  - x86 registers extended to 64 bits
    - Number of registers doubled

Athlon 64 – block diagram



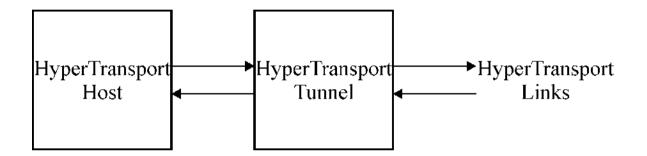
## • Athlon 64 – registers

127

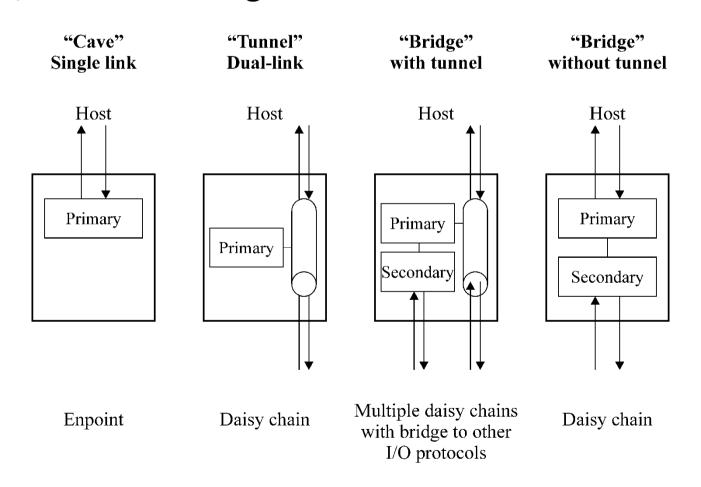
| 63 | 32 31 | 16 15              | 87 0 |
|----|-------|--------------------|------|
|    | RAX   | EAX                |      |
|    | RВX   | Ε <mark>β</mark> Χ | BX   |
|    | RÇX   | Ε¢Χ                | CX   |
|    | RÞX   | ΕÞΧ                | I    |
|    | RŞP   | Ε\$P               | SP   |
|    | ₽₿₽   | ΕŖ̈́Ρ              | ВP   |
|    | RSI   | EŞI                | ŞI   |
|    | rþi   | ΕÞΙ                | ŅΙ   |
|    | R8    |                    |      |
|    | R9    |                    |      |
|    | R10   |                    |      |
|    | R11   |                    |      |
|    | R12   |                    |      |
|    | R13   |                    |      |
|    | R14   |                    |      |
|    | R15   |                    |      |

| XMM0  |  |
|-------|--|
| XMM1  |  |
| XMM2  |  |
| XMM3  |  |
| XMM4  |  |
| XMM5  |  |
| XMM6  |  |
| XMM7  |  |
| XMM8  |  |
| XMM9  |  |
| XMM10 |  |
| XMM11 |  |
| XMM12 |  |
| XMM13 |  |
| XMM14 |  |
| XMM15 |  |

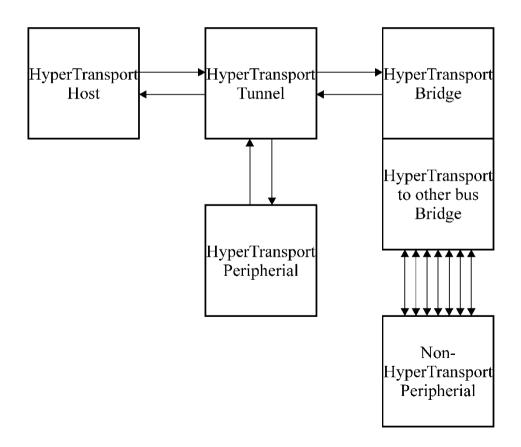
| ST0     |
|---------|
| ST1     |
| ST2     |
| ST3     |
| ST4     |
| ST5     |
| ST6     |
| <br>ST7 |
|         |
|         |
|         |


| RF ag | gs EFlags |
|-------|-----------|
| RIP   | EIP       |

- Athlon 64 operating modes
  - Legacy for 32-b OS
    - Typical x86, full-compatible with 32b, 16b apps
    - No 64-b extensions
  - LongMode for 64-b OS
    - 64-b
      - for 64-b apps
      - 64-b processing
      - 64-b registers
    - Compatibility
      - 32/16-b apps, no recompile necessary
      - No 64-b extensions


- Athlon 64 main properties
  - Built-in DDRAM controller
    - Shorter delays (80 vs. 160 ns in NorthBridge)
      - Higher throughput for random access
    - Single (4 GB) or double (8 GB) channel
    - 2.48 GBps/channel
    - DDR support
    - Less flexibility of memory selection
      - Future upgrade to DDR2 support
      - Memory access via NorthBridge still possible

- Athlon 64 main properties
  - HyperTransport bus
    - Open standard (opposite to Intel FSB)
    - Serial, bi-dir, point-to-point links
    - LVDS (Low Voltage Differential Signalling) 1.2V
    - 400M to 2.8G transfers/s
    - Data link 2, 4, 8, 16, 32 bits, can be asymetrical
    - Up to 22.4 GBps
    - Packet: 4..64 B payload, 8..12 B header
    - Can cooperate with PCI, PCI-X, PCI-Express


- HyperTransport Bus
  - General architecture



- HyperTransport Bus
  - I/O device configurations



- HyperTransport Bus
  - System example
    - Cooperation with PCI, PCI-X, PCI Express possible



- HyperTransport Bus
  - Link
    - Data path: 2, 4, 8, 16 or 32 bits
    - Clock
    - Control line
    - Each signal = twin wire lines
  - Signals
    - CAD (command, address, data)
    - CLK one per 8 CAD bits
      2×, 4×, 8× only 1 CLK
    - CTL control (1=control, 0=data)
    - Reset, PWROK

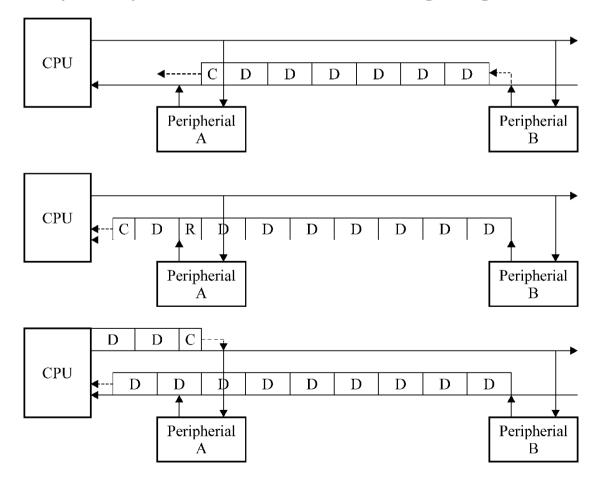
- HyperTransport Bus
  - Packet format
    - Control 4 or 8 B
    - Data 4..64 B

RdReq RdResp Data

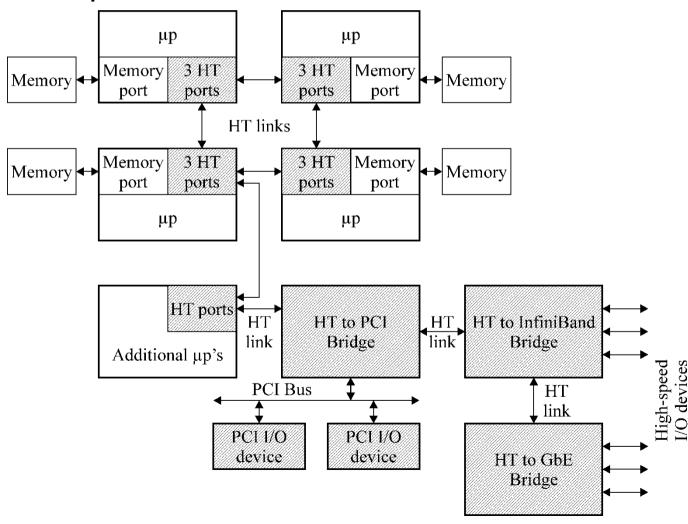
4 B

Data

4..64 B


Low latency (low overhead)

WrReq


8 B

- E.g., PCI-Express:
  - » 12-16 B transaction layer
  - » 8 B data link layer
  - » 8b/10b encoding (20%) physical layer

- HyperTransport Bus
  - Priority Request Interleaving
    - Request packet insertet into ongoing data stream



- HyperTransport Bus
  - Example PC structure

