
Microprocessor and Embedded Systems

Faculty of Automatic Control, Electronics and Computer Science,

Informatics, Bachelor Degree

Lecture 9

Microprocessor

operation acceleration

Bartłomiej Zieliński, PhD, DSc

µp acceleration

Program:

• Acceleration/optimisation?

• Pipelining

• Superscalar processing

• Branch prediction

• Cache memory

µp acceleration

• Acceleration/optimisation?

– Clock frequency up

• Frequency limit in silicon structure

– Forms of parallel execution

• Pipelining

• Superscalar

• Full parallel

– RISC/CISC/FISC

µp acceleration

• Typical RISC properties

– Constant instruction format

• Easier decoding

– Memory only for rd/wr operations

– Many registers (32+)

• No outlined accumulator

• Argument passing through registers (not stack)

– Small number of command

– Fast command execution (1 clk/cmd)

– Simple decoding/control unit

– (Harvard achitecture)

µp acceleration

• Pipeline execution

– Command split into phases

• E.g., Fetch/Decode/Address/Exec/Write

• Optimum≈8 phases?

– Few commands processed concurrently

• Each in another processing phase

– Problems

• Command time in different stages varies → queues

• Exec interruption → pipe emptied → big delay

• Command & data mutual dependencies

µp acceleration

• Superscalar execution

– More than 1 execution pipe

• >>1 not effective due to dependencies

• Pipes may have different capabilities

– Command sequence split into pipes

• Depends on differences between pipes

• Sychronous/asynchronous pipes

– Syn: pipe1 waits → pipe2 waits too even if no reason

– Asyn: pipe1 waits → pipe2 goes on

» Cmd2 ends before cmd1

• Out-of-order execution

µp acceleration

• Operand dependencies

– Read after read

• E.g., B=B+C || A=C

→ Dual Pipe Access

– Read after Write

• E.g., A=A+B || C=A; A=A+B || [M]=A

→ Result forwarding, Operand forwarding

– Write after Read

• E.g., B=A || A=A+C

→ Register renaming

– Write after Write

• E.g., A=[M] || A=A+B

µp acceleration

• Branch prediction

– 3 kinds of code execution disturbances:

• Interrupts

• Unconditional jumps

• Conditional jumps

– Conditional jumps

• Which branch should enter the pipeline?

– Longer pipe → bigger problem

• Decision in the middle/end of pipe

• Pipe emptying up to few tens of clk’s

µp acceleration

• Branch prediction

– Possible solutions

• Branch prediction

– Psuccess<1

• Multipath execution

– Hardware multiplication

– Implicit execution (no result publication) until it’s known

which path is correct

– Good example: Intel Itanium

µp acceleration

• Branch prediction

– Branch target buffer

BTB size Hit ratio

16 40%

32 50%

64 64%

128 72%

256 78%

512 80%

1024 85%

2048 87%

µp acceleration

• Branch prediction

– Branch prediction methods

• Static

– Command bit defined by a compiler

» Based on possible code execution analysis

» What if a compiler makes a mistake?

– By jump address (Intel’s solution: Pentium III)

» Negative (jump back): end of loop → jump

» Positive (jump forward): error service → not jump

µp acceleration

• Branch prediction

– Branch prediction methods

• Dynamic

– History bits set according to program flow

» 1 bit: too little („checkerboard”)

» 2 bits:

µp acceleration

• Optimisation

– For a given µp type

– Synchronous pipes:

• Manual instr. placement for better pairing

µp acceleration

• Cache memory

– Placement in a µp system

µp acceleration

• Cache memory

– What is better?

• Small capacity, high speed

– Compact code

• Large capacity, low speed

– Distributed code

µp acceleration

• Cache memory

– Cache organisation

µp acceleration

• Cache memory

– Policies

• Write-through

• Write-back

– How to ensure cache & RAM consistency in a

multiprocessor system?

– MESI protocol

• Modified

• Exclusive

• Shared

• Invalid

