

Rzeczpospolita Polska

Unia Europejska Europejski Fundusz Społeczny

Politechnika Śląska jako Centrum Nowoczesnego Kształcenia opartego o badania i innowacje

POWR.03.05.00-IP.08-00-PZ1/17

Projekt współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego

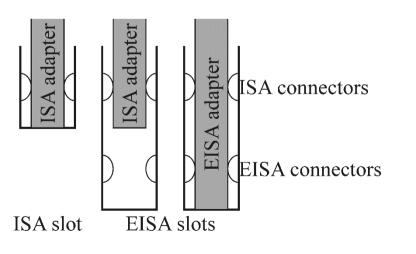
Microprocessor and Embedded Systems

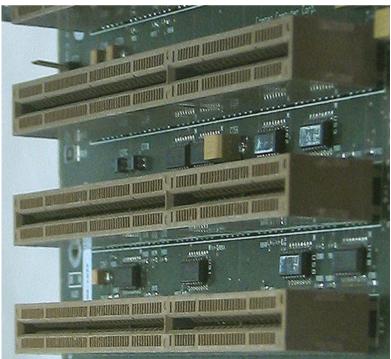
Faculty of Automatic Control, Electronics and Computer Science, Informatics, Bachelor Degree

Lecture 7

From EISA to PCI

Bartłomiej Zieliński, PhD, DSc

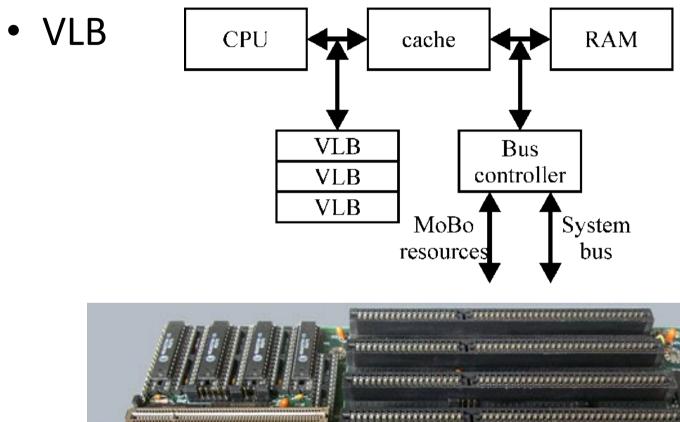

Program:


- EISA bus
- MCA architecture
- VLB architecture
- PCI architecture
- PCI signals

• PC architecture deployment

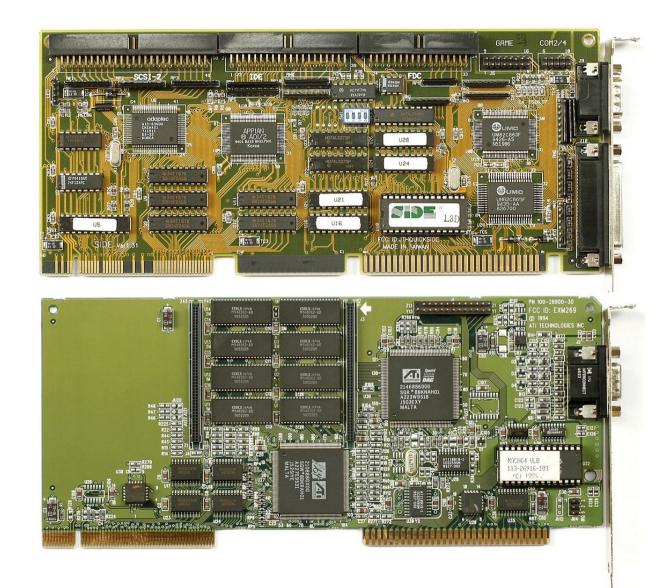
Bus	Data bits	Frequency [MHz]	Throughput [MBps]
ISA	8 or 16	8.33	8.33
EISA	32	8.33	33
MCA	32	10	20
VLB	32	40	120
PCI 2.0	32	33	132
PCI 2.0	64	33	264
PCI 2.1	32	66	264
AGP	32	66	264
AGP	32	133	532
AGP	32	266	1064

- EISA
 - Extended Industry Standard Architecture
 - Backward compatible with ISA
 - 16/32-b recognition
 - ISA cards work in EISA slots
 - 2-level contact slot
 - 98 ISA lines + 90 EISA-specific

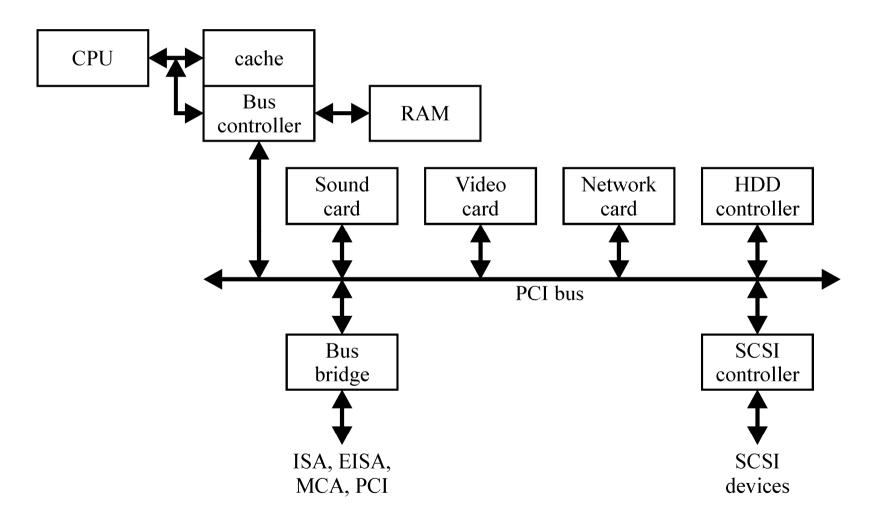

- EISA
 - Additional signals
 - LA_{2..16}, LA_{24..31}
 - $LA_{17..23}$ present in ISA
 - Not buffered smaller delays
 - D_{16..31}, BE_{0..3}
 - EXE16, EXE32
 - Force 16- or 32-b transfer
 - Default = 8-b for compatibility

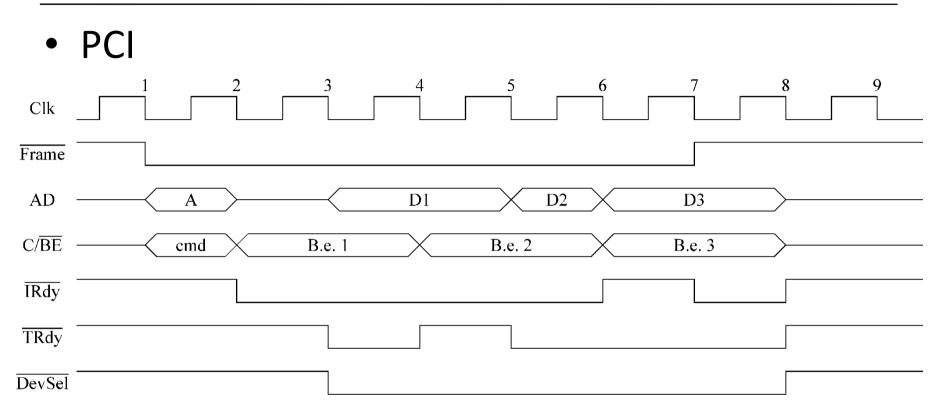
- EISA
 - 32-b DMA, 8/16/32-b transfers, incl. 8237-like
 - 7 channels
 - 15 IRQ
 - F_{clk}=8.33 MHz (ISA)
 - Memory access = CPU clock
 - 1 clk / cycle

- EISA
 - Configuration memory
 - 4 KB
 - Software-only device installation
 - Configuration program for a card
 - Numbered sockets
 - МоВо: 0
 - Slots: 1-15
 - MoBo resources: MaxSlot+1..63
 - BIOS tries to resolve resources conflicts


- MCA
 - MicroChannel Architecture (IBM PS/2)
 - 10 MHz, 2 clk/cycle
 - 32-b DMA (no 8237-like)
 - CPU + up to 16 μ p on expansion cards
 - 4 arbitration bits
 - Software-only device configuration
 - Card numbers
 - Socket numbers
 - Software card disconnection possible

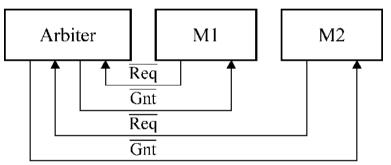
- VLB
 - VESA Local Bus
 - Video Electronics Standards Association
 - Devices connected directly to μp 's local bus
 - 80386, 80486, (also Pentium?)
 - Fclk=CPU clk
 - 1-3 slots
 - Number of slots depends on frequency (?)
 - 50 MHz 1 slot, 40 MHz 2 slots, 33 MHz 3 slots
 - Card types
 - Graphics card, HDD/FDD controllers, network cards


• VLB



- VLB
 - Advantages
 - Simplicity, low cost
 - High throughput (up to 200 MBps @ 50 MHz)
 - Disadvantages
 - No auto-configuration
 - Hardware-only configuration
 - 486-signals dependence
 - PCI-VLB bridges not very popular
 - Limited number of slots
 - Low reliability & scalability
 - Problems with high frequencies

- PCI
 - Peripherial Component Interconnect
 - Very complex systems:
 - 256 buses × 32 devices × 8 functions
 - 33/66 MHz, 1 clk/cycle, 32/64 bits
 - Devices:
 - Initiator master
 - Target slave
 - Software configuration
 - 256 B configuration memory
 - Socket numbers
 - Vendors & devices ID's


• PCI

- Frame=0 \rightarrow read addr and cmd
- Addr $OK \rightarrow devsel$
- Data exchange
 - 1 clk/exchange
 - Irdy, Trdy=1 \rightarrow wait
- Frame=1 \rightarrow end
- Devsel=1 \rightarrow bus free

- PCI arbitration
 - Performed when ≥ 1 master active
 - Usually in Host/PCI, but not standarized

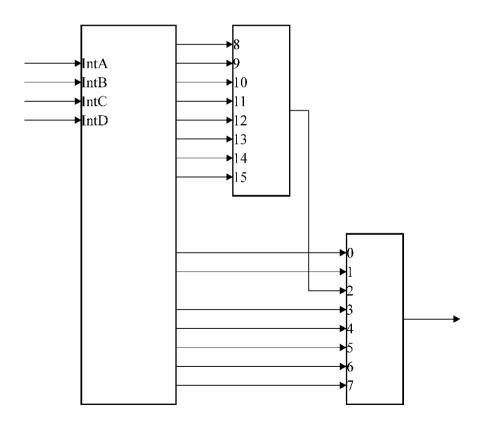
- Arbitration algorithm not defined
 - E.g., round-robin, priority, etc.
- Possible during data transfer
 - "hidden arbitration"

• PCI signals (basic – 32b and auxilliary – 64b)

Master	Signal	Slave
\leftrightarrow	AD ₀₃₁	\leftrightarrow
\rightarrow	C/\overline{BE}_{03}	\rightarrow
\leftrightarrow	PAR	\leftrightarrow
\leftrightarrow	Frame	\rightarrow
\leftarrow	TRdy	\leftarrow
\rightarrow	IRdy	\rightarrow
\leftarrow	Stop	\leftarrow
\leftarrow	DevSel	\leftarrow
÷	IDSel	\rightarrow
\rightarrow	Req	×
\leftarrow	Gnt	×
\leftarrow	Clk	\rightarrow
÷	RST	\rightarrow
\leftarrow	PErr	\leftarrow
\rightarrow	SErr	\leftarrow

Master	Signal	Slave
\leftrightarrow	AD ₃₂₆₃	\leftrightarrow
\rightarrow	C/\overline{BE}_{47}	\rightarrow
\leftrightarrow	PAR64	\leftrightarrow
\leftrightarrow	Req64	\rightarrow
\leftarrow	Ack64	\leftarrow
\leftrightarrow	Lock	\rightarrow
\leftrightarrow	ClkRun	\leftrightarrow
×	SBO	\rightarrow
×	Sdone	\rightarrow
\leftarrow	TDI	\rightarrow
\rightarrow	TDO	\leftarrow
\leftarrow	ТСК	\rightarrow
\leftarrow	TMS	\rightarrow
\leftarrow	TRst	\rightarrow
\rightarrow	IntA IntD	\leftarrow

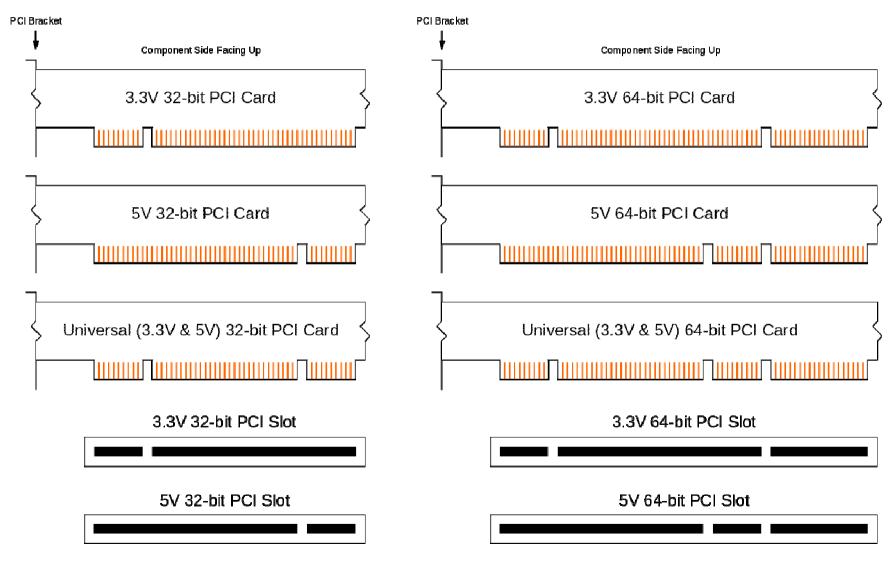
- PCI signals detailed
 - AD address/data
 - No bus sizing only 32- or 64-b transfers
 - $-C/\overline{BE}$ command/byte enable
 - Address phase command
 - Data phase byte enable
 - PAR parity check for AD and C/\overline{BE}
 - Parity error action depends on settings
 - From ignore to NMI


• PCI signals detailed

Code	Command	Comment
0	IntAck	Read of interrupt controller; only for PC compat.
1	Special Cycle	Broadcast to many targets
2	I/O Read	
3	I/O Write	
4	®	
5	®	
6	Mem Read	
7	Mem Write	
8	®	
9	®	
А	Conf Read	
В	Conf Write	
С	Mem Read Multiple	Long read beyond cache line
D	Dual Address cycle	64-bit address from initiator
E	Mem Read Line	Read to the end of cache line
F	Mem Write & Invalidate	

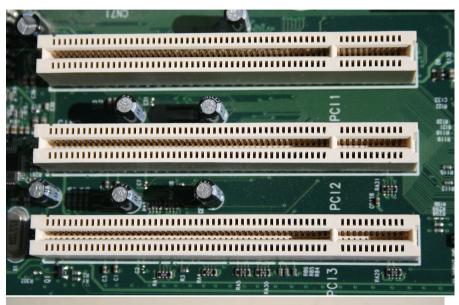
- PCI signals detailed
 - Frame activated by granted initiator
 - Inactive during last transfer
 - $-\overline{\text{TRdy}}$ target ready; inactive \rightarrow wait state
 - IRdy initiator ready
 - Stop immediate transmission end by target
 - Reaction depends on \overline{TRdy} and \overline{DevSel}
 - DevSel address recognized by target
 - No later than 2 clk after address sent
 - IDSel used for Configuration rd/wr

- PCI signals detailed
 - $-\overline{\text{Req}}, \overline{\text{Gnt}} \text{for initiator arbitration}$
 - $-\overline{\text{PErr}}$ parity error
 - $-\overline{\text{SErr}}$ system error other than parity; \rightarrow NMI
 - PAR64 parity bits for 64-b extension
 - $-\overline{\text{Req64}}$ attempt to perform 64-b transfer
 - $-\overline{\text{Ack64}}$ 64-b transfer allowed; timing like $\overline{\text{DevSel}}$
 - $-\overline{\text{Lock}}$ target locked
 - ClkRun lower fclk; for power saving
 - $-\overline{\text{SBO}}$ don't write to not update WriteBack cache


- PCI signals detailed
 - $-\overline{\text{IntA}}$.. $\overline{\text{IntD}}$ interrupt lines
 - Can be shared among PCI devices
 - In PC translated to IRQ lines

- PCI signals detailed
 - In PC, various INT assignment to various slots
 - PCI devices can only use A6 pin
 - INT conflits avoidance \rightarrow slot change
 - Example assignment (from some real MoBo)

Slot	A6	A7	B7	B8
1	Α	С	В	D
2	В	D	А	С
3	С	А	В	D
4	Α	В	D	С
5	D	В	С	А


PCI – slot & card types

• PCI example photos

