

Rzeczpospolita Polska

Unia Europejska Europejski Fundusz Społeczny

Politechnika Śląska jako Centrum Nowoczesnego Kształcenia opartego o badania i innowacje

POWR.03.05.00-IP.08-00-PZ1/17

Projekt współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego

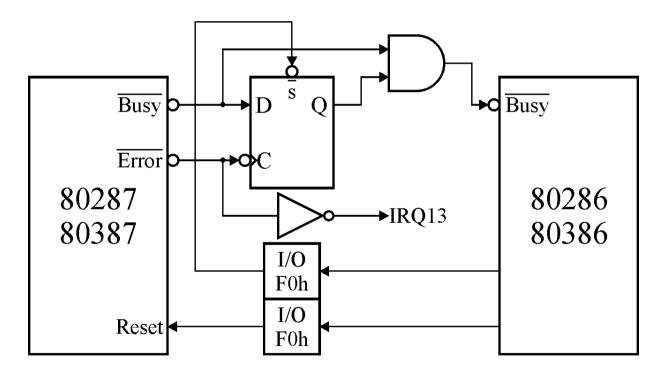
Microprocessor and Embedded Systems

Faculty of Automatic Control, Electronics and Computer Science, Informatics, Bachelor Degree

Lecture 4

From 80286 to 80486

Bartłomiej Zieliński, PhD, DSc

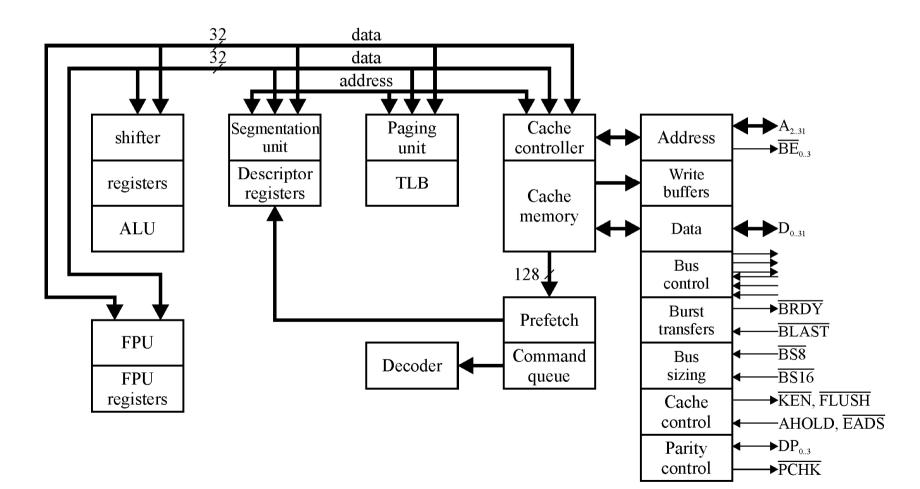

Program:

- 80286 basic properties
- 80386 basic properties
- 80486 basic properties
- 80486 structure, signals

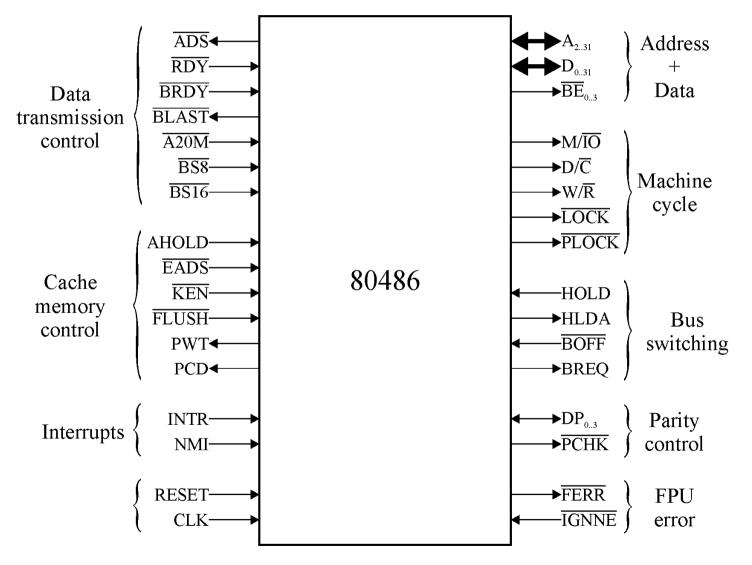
- 80286 basic properties
 - Two operating modes
 - Real mode
 - Executable code compatibility
 - Few additional commands
 - » Procedure call support
 - » Table support
 - Protected (virtual) mode
 - Additional commands
 - Operating system support functions
 - Some command restricted for OS
 - Source-code-only compatibility

- 80286 basic properties
 - Coprocessor cooperation changed
 - 287 can't address memory
 - Virtual addresses can be used
 - 286 must read/write data
 - » (2 access cycles: memory & coprocessor)
 - Coprocessor visible in 286' I/O addressing space
 - Software emulation possible
 - No coprocessor \rightarrow exception

- 80286 basic properties
 - Coprocessor cooperation



- 80286 basic properties
 - Address & data buses separate
 - Higher throughput
 - Faster address decoding
 - Interleaved memory support
 - Disadvantages
 - Segment capacity ≤ 64 KB
 - 8086 software can't run under 80286 protected mode
 - Can't switch back to the real mode (reset required)
 - Problems in some μcomputer architectures (e.g., PC/AT)
 - Registers have predefined functions
 - e.g., accumulator, base, index...


- 80386 basic properties
 - Three operating modes
 - Real mode
 - Like 8086 + few additional commands
 - Protected (virtual) mode
 - Like 80286, but 32-bit addressing
 - Virtual 8086
 - Can run real-mode programs in protected mode
 - Some direct hardware access is forbidden
 - Multitasking is possible
 - Software switch between all modes possible

- 80386 basic properties
 - Register usage limitations omitted
 - 16-b regs: only BX can address
 - 32-b regs: EAX, EBX, ECX, EDX can address
 - Coprocessor cooperation like in 80286
 - 80287 or 80387 can be used
 - Memory management
 - Segmentation
 - Paging
 - Most of 286 disadvantages resolved

• 80486 structure

• 80486 signals

- 80486 signals
 - Address lines
 - $A_{0..1} \rightarrow$ decoded into $\overline{BE_{0..3}}$
 - Which byte in double word is active during transfer
 - 1, 2, 3 or 4 bytes transferred
 - Not every combination possible
 - $A_{2..3} \rightarrow$ output only
 - $A_{4..31} \rightarrow bidirectional$
 - Bus size
 - BS8, BS16 data bus width adjustment to device capabilities
 - E.g., signal from address decoder
 - A20M mask/unmask A20 line

- 80486 signals
 - Machine cycle
 - $\overline{\text{LOCK}}$ bus lock
 - <u>PLOCK</u> (Pseudolock) transfer longer than 1 bus cycle
 - Descriptor table read
 - Cache fill
 - FPU read/write
 - FPU error
 - $\overline{\text{FERR}}$ FPU error
 - For MS-DOS compat.
 - $\overline{\text{IGNNE}}$ ignore FP err.
 - $-\overline{\text{FERR}}$ appears

	M/IO	D/Ē	W/R	Cycle
	0	0	0	Interrupt acknowledge
	0	0	1	Halt or special cycle
	0	1	0	I/O Read
	0	1	1	I/O Write
	1	0	0	Fetch
	1	0	1	
	1	1	0	Memory Read
	1	1	1	Memory Write

- 80486 signals
 - Bus switching
 - HOLD, HLDA for DMA controller
 - BREQ internal bus request generated
 - $\overline{\mathrm{BOFF}}$ (Backoff) fast bus disconnect in the nearest clk
 - Faster than HOLD/HLDA
 - Transfer paused
 - Parity control
 - <u>PCHK</u> data parity error detected
 - System designer freedom how to cope with this
 - DP_{0..3} data parity bit for each byte

- 80486 signals
 - Data transmission control
 - $\overline{\text{ADS}}$ address present on address lines
 - $\overline{\text{RDY}}$ device ready
 - BRDY device ready for burst transfer
 - BLAST latest byte of data exchange
 - Cache control
 - EADS address given by external device
 - AHOLD another bus master invalidates cache
 - KEN current cycle is cacheable
 - FLUSH force memory update from cache
 - PWT, PCD memory page cache policy