

Rzeczpospolita Polska

Unia Europejska Europejski Fundusz Społeczny

Politechnika Śląska jako Centrum Nowoczesnego Kształcenia opartego o badania i innowacje

POWR.03.05.00-IP.08-00-PZ1/17

Projekt współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego

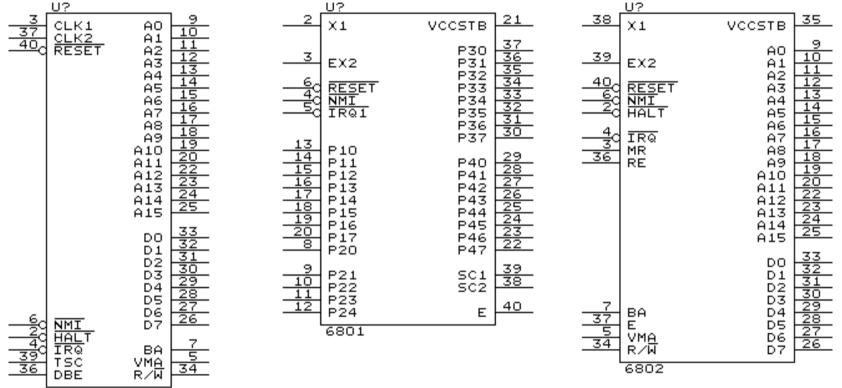
Microprocessor and Embedded Systems

Faculty of Automatic Control, Electronics and Computer Science, Informatics, Bachelor Degree

Lecture 15

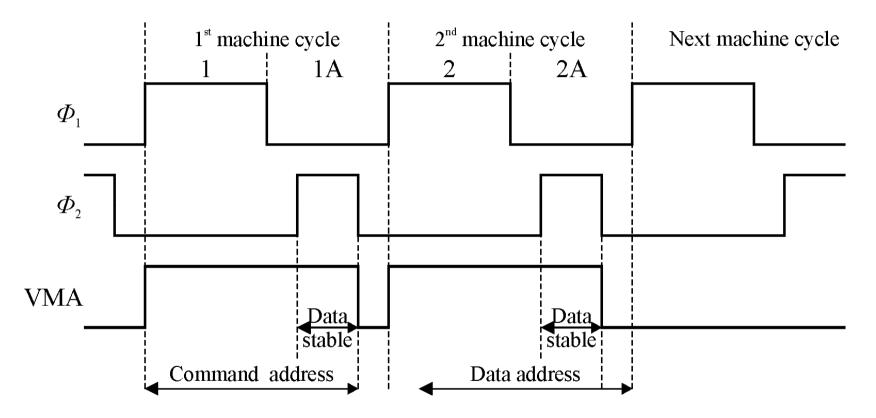
Motorola 68xx-based microprocessors and microcontrollers

Bartłomiej Zieliński, PhD, DSc

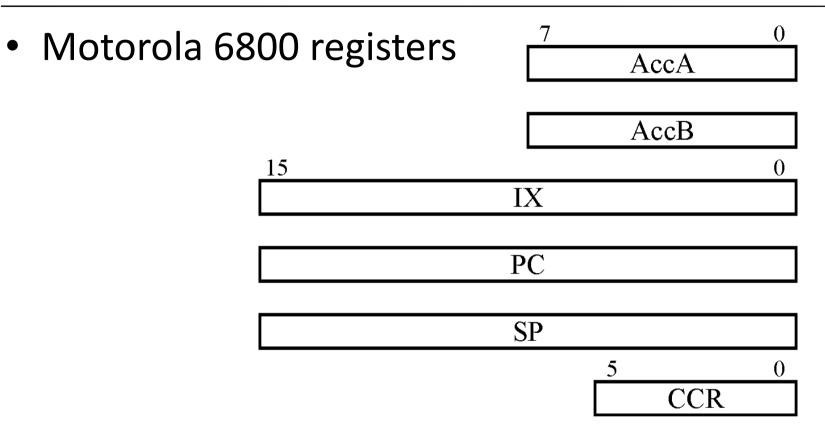

Program:

- A little history
- 6800 and its derivatives
 - 6809
 - 6502
 - 68HC05, 08, 11
 - ST7LITE
 - Nitron

- Motorola 6800
 - Designed in 1974
 - Based on DEC PDP-11 architecture
 - 16-bit address bus
 - 8-bit data bus
 - No separate I/O space
 - 72 commands, 197 opcodes
 - F_{max}=1÷2 MHz
 - Single power voltage (rare in this time)


- Motorola 6800 family
 - Peripherials
 - 6810 RAM 128×8
 - 6820 PIA (Peripherial Interface Adapter)
 - 6830 ROM 1024×8
 - 6850 CIA (Communications Interface Adapter)
 - 6860 Modem
 - 6870 Two-Phase Clock
 - $-\mu p/\mu c$
 - 6802 includes RAM and clock
 - 6801, 6805 RAM, ROM, peripherials

• Motorola 6800



6800

• Motorola 6800 clock

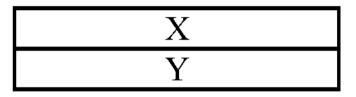
- Motorola 6800 control signals
 - $-R/\overline{W}$
 - VMA Valid Memory Address (1 a moment after the address is placed on the bus)
 - Reset (reset vector FFFE, FFFF)
 - $-\overline{\text{NMI}}$ (NMI vector FFFC, FFD)
 - (SWI) (SWI vector FFFA, FFFB)
 - $-\overline{IRQ}$ (IRQ vector FFF8, FFF9 and lower)
 - Halt finish command & halt; A&D buses Hi-Z
 - BA Bus Available; μp is halted
 - TSC Tri-State Control (1→tri-state Address bus)
 - DBE Data Bus Enable ($0 \rightarrow$ tri-state Data bus)

- CCR (flags)
 - <u>Half carry, Interrupt, Negative</u>,
 - <u>Z</u>ero, o<u>V</u>erflow, <u>C</u>arry

- Motorola 6809
 - Designed in 1978
 - 16-b extensions
 - Mul/div command
 - Two 8-b accu's can be merged in a single 16-b acc
 - Two 16-b index registers
 - User and System stack pointers
 - Command list simplified
 - 59 commands vs. 78 in 6800
 - Source-code compatibility

• Motorola 6809 registers

15 8	7 0				
D					
AccA	AccB				


Х	
Y	

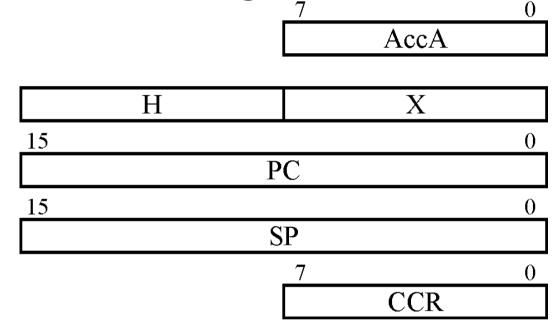
U				
S				
PC				

DP	CCR
21	0011

- MOS Technology ("Mostek") 6502
 - Designed in 1975
 - +/- the cheapest on the market
 - With Z80 began home computer revolution
 - Similar to 6800 design, simplified
 - No tri-state buses
 - Only a single accumulator
 - Stack limited to 256B
 - Index registers limited to 8-b
 - Base address stored in command
 - Command set simplified (56 commands)
 - 6501 was 6800-pin compatible (lawsuit with Motorola)

• MOS 6502 registers

PC										
0	0	0	0	0	0	0	1		SP	
								7		0
									CCR	


- Motorola 68HC08 family
 - Full executable-code compatibility with HC05
 - Including only 8-b of X register pushing onto a stack
 - Extended command list
 - 78 new opcodes
 - Fast mul/div, BCD, mem→mem transfer, etc.
 - New addressing modes
 - Extended address bus support
 - Memory page switching
 - DMA support
 - Only the most complex $\boldsymbol{\mu}\boldsymbol{c}$

CCR

Motorola 68HC05 registers

 (for reference only)
 AccA
 AccA
 X
 12
 10
 PC
 5
 4
 0
 0
 0
 0
 1
 SP
 7
 0

Motorola 68HC08 registers

- For compatibility with HC05:
 - Reset \rightarrow H=0
 - Reset \rightarrow SP=00FF

- Motorola 68HC08 addressing modes
 - Implicit/inherent
 - Immediate
 - Direct
 - Absolute/extended
 - Relative
 - Indexed without offset
 - Indexed with 8/16-bit offset
 - Stackpointer Indexed with 8/16-bit offset
 - Memory-to-memory (4 modes)
 - Indexed with post increment
 - Indexed with 8-bit offset and post increment

- Motorola 68HC08 addressing modes
 - Implicit
 - No explicit argument
 - Mostly 1-byte opcode
 - Commands executed within 1 clock period
 - Executed on A, X, H:X
 - Very effective, very fast
 - Limited by low register count
 - Few examples:
 - Inca/Deca, incx/decx,...
 - Psha/pula, pshh/pulh,...
 - nop

- Motorola 68HC08 addressing modes
 - Immediate
 - 8/16-b argument directly after opcode
 - Argument is not and adress
 - To write a constant into a register
 - 16-b regs: H:X, SP, PC only
 - To compare register with a constant
 - Few examples:
 - Cmp #nn; compare A with #nn
 - Ldx #nn; x=#nn
 - Ldhx #nnnn; h:x=#nnnn
 - Add #nn; a+=#nn
 - Cbeqa #nn; jump if a=#nn

- Motorola 68HC08 addressing modes
 - Direct
 - 8-bit address directly after opcode
 - Higher half of address = 0
 - "page zero addressing"
 - "page 0" \rightarrow frequently used variables, etc.
 - Faster program execution
 - Lower memory consumption
 - Few examples
 - Add nn; a+=(nn)
 - And nn; a&=(nn)
 - Cbeq nn; jump if a=(nn)

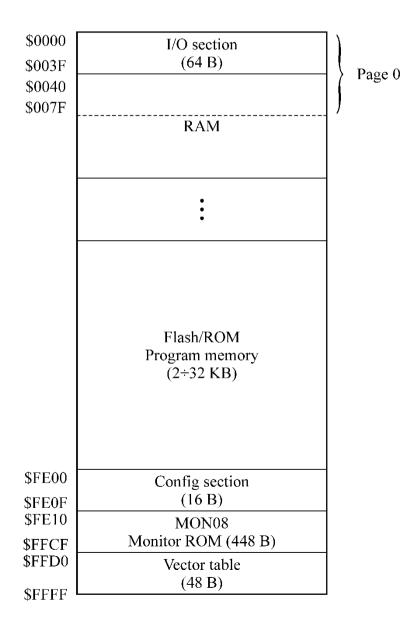
- Motorola 68HC08 addressing modes
 - Absolute/extended
 - 16-b arg addr directly after opcode
 - 3 bytes: opcode, MSB, LSB
 - Entire memory addressing space can be reached
 - If "page zero" not large enough
 - Programmer free from addressing mode choice
 - Choice is done by the assembler
 - Few examples:
 - Add nnnn; a+=(nnnn)
 - Sta nnnn; (nnnn)=a
 - Lda nnnn; a=(nnnn)

- Motorola 68HC08 addressing modes
 - Indexed
 - Without offset (1B: opcode)
 - Effective adress = H:X
 - E.g., jmp ,x; jump to (h:x)
 - With 8-b offset (2B: opcode, offset)
 - Effective address = H:X + offset
 - E.g., H:X = table base address, offset = table index
 - E.g., jmp \$ff, x; jump to (h:x)+\$ff
 - With 16-b offset (3B: opcode, MSB, LSB)
 - Effective address = H:X + offset
 - E.g., offset = table base address, H:X = table index
 - E.g., jmp \$10ff, x; jump to (h:x)+\$10ff

- Motorola 68HC08 addressing modes
 - Indexed
 - With post increment
 - Effective address = H:X; H:X++
 - E.g., cbeq X+, rel8
 - With 8-b offset and post increment
 - Effective address = H:X + offset; H:X++
 - E.g., cbeq ofs8, X+, rel8
 - Stackpointer Indexed
 - Similar to indexed
 - Interrupts disabled \rightarrow SP = 2nd index reg
 - All commands must be prefixed (1 byte longer)

- Motorola 68HC08 addressing modes
 - Memory to memory
 - Mov instruction only
 - Copy without using internal registers
 - (new comparing to HC05)
 - Immediate to direct
 - Mov #nn, ad; (ad)=#nn
 - Direct to direct

- Mov ad1, ad2; (ad1)=(ad2)


Direct to indexed with post increment

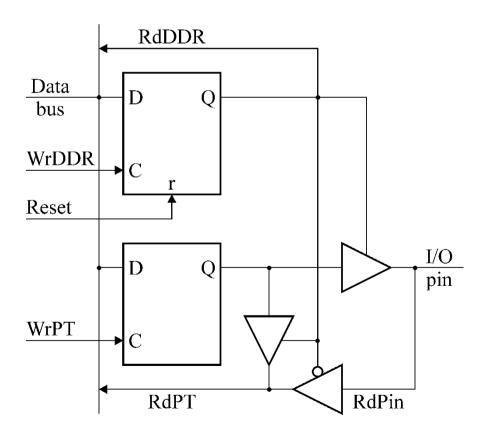
- Mov ad, X+; (ad)=(H:X++)

Indexed to direct with post increment

- Mov X+; ad; (H:X++)=(ad)

- General memory map
 - I/O section peripherials
 - RAM part in Page 0
 - Typ. 128B÷2KB
 - Flash/ROM
 - End at \$FFDF
 - Begin depends on size
 - Config section
 - Specific functions
 - Monitor
 - For debugging
 - Vector table

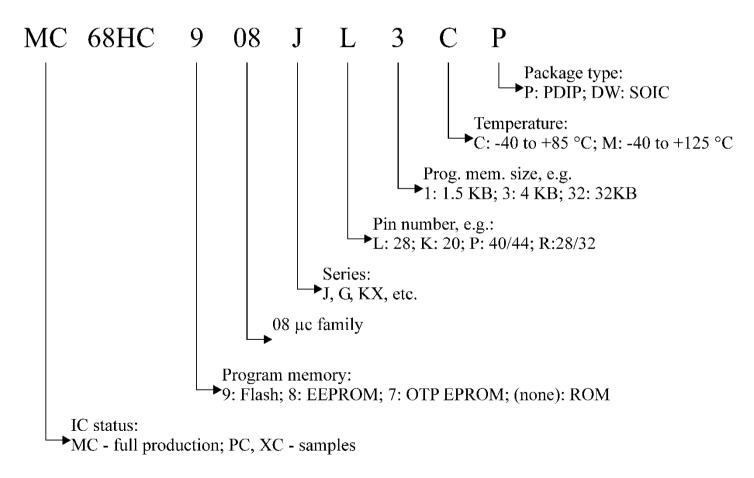
68xx


• Interrupts

Priority	Source	Flag	Mask	Int reg.	Vector
1	Reset	—	—	-	\$FFFE-\$FFFF
	SWI	_	-	-	\$FFFC-\$FFFD
	IRQ1	IRQF1	IMASK1	IF1	\$FFFA-\$FFFB
					\$FFF8-\$FFF9
	TMR ch. 0	CHOF	CHOIE	IF3	\$FFF6-\$FFF7
	TMR ch. 1	CH1F	CH1IE	IF4	\$FFF4-\$FFF5
	TMR ovl	TOF	TOIE	IF5	\$FFF2-\$FFF3
	Keyboard	KEYF	IMASKK	IF14	\$FFFO-\$FFF1
	ADC	C0C0	AIEN	IF15	\$FFDE-\$FFDF

- Interrupts
 - Reset
 - Reasons
 - $-\overline{\text{RST}}$ signal -reset
 - POR power-on reset
 - LVI low voltage inhibited
 - COP computer operating properly
 - ILOP illegal opcode reset
 - ILAD illegal address reset
 - Action
 - SP=\$00FF; H=0; CCR.I=0 (interrupt disable)
 - Remaining registers=random
 - Peripherials initialise
 - PC=M[\$FFFE-\$FFFF]

- Interrupts
 - Software interrupt
 - SWI command
 - Non-maskable (does not depend on CCR.I)
 - Possible applications:
 - Testing & debugging breakpoint
 - Call a procedure by a jump table (like 8086)

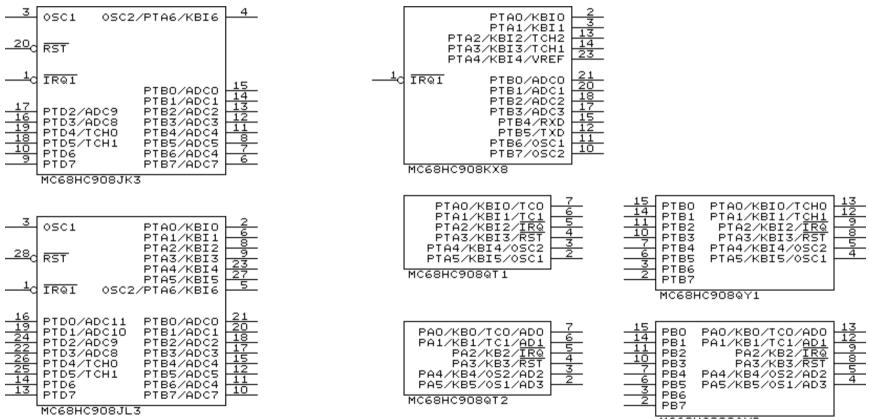

- I/O ports
 - General structure
 - DDR (Data Direction Register)
 - 0 = input, 1 = output
 - PT (Port Register)
 - Possible options
 - Pull-up resistors
 - Open-drain output
 - High current out.
 - Peripherial I/O
 - Etc.

68xx

• Circuit names

- E.g., MC68HC908JL3CP

- μc series
 - J low cost (20, 28 pins)
 - G general purpose (28/32, 40/44 pins)
 - KX "small" applications (16 pins)
 - AZ with CAN interface (QFP 64/100 pins)
 - RK "remote keyless entry" (20 pins)
 - JB with USB (DIP 20, SOIC 28, QFP 44 pins)
 - MR for electric motor control (QFP 64 pins)
 - etc.


• GP series pinout examples

16 PTD0/55 15 PTD0/55 22 19 PTD1/MIS0 PTB0/AD0 22 16 PTD1/MIS0 PTB0/AD0 24 PTD2/MOSI PTB1/AD1 24 17 PTD2/MOSI PTB1/AD1 22 PTD3/SPSCK PTB2/AD2 25 21 PTD3/SPSCK PTB3/AD3 25 PTD4/T1CH0 PTB3/AD3 26 22 PTD5/T1CH1 PTB4/AD4 14 PTD6/T2CH0 PTB5/AD5 28 24 PTD7/T2CH1 PTB6/AD4 13 PTD7/T2CH1 PTB6/AD4 29 24 PTD7/T2CH1 PTB6/AD4 9 PTE0/TXD 2 12 PTE0/TXD PTB7/AD7	35 5 0SC1 PTA0/KBD0 33 36 3 0SC2 PTA1/KBD1 35 37 3 CGMXFC PTA2/KBD2 36 37 3 CGMXFC PTA2/KBD2 36 37 3 CGMXFC PTA2/KBD3 37 38 6 RST PTA4/KBD4 38 39 6 RST PTA4/KBD4 38 31 140 IR@1 PTA5/KBD5 39 41 14 IR@1 PTA6/KBD6 40 25 16 PTD1/MIS0 PTB0/AD0 24 25 16 PTD1/MIS0 PTB0/AD2 26 27 18 PTD3/SPSCK PTB3/AD3 27 28 21 PTD4/T1CH0 PTB3/AD3 27 29 22 PTD5/T1CH1 PTB4/AD4 28 29 22 PTD5/T1CH1 PTB5/AD5 29 31 VDDA PTC2 10 11 32 12 PTC0/TXD PTC3 9 10 1 21 VDA PTC3 11 32 12 PTC0/TXD PTC3 11 32 10
--	---

- If pins not available in some package

- PTC5, PTC6 connected to gnd
- PTD6, PTD7 unconnected

J, KX, QT, QY series pinout examples

MC68HC908QY2