

Rzeczpospolita Polska

Unia Europejska Europejski Fundusz Społeczny

Politechnika Śląska jako Centrum Nowoczesnego Kształcenia opartego o badania i innowacje

POWR.03.05.00-IP.08-00-PZ1/17

Projekt współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego

Microprocessor and Embedded Systems

Faculty of Automatic Control, Electronics and Computer Science, Informatics, Bachelor Degree

Lecture 10

Microprocessor systems development & testing

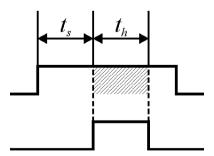
Bartłomiej Zieliński, PhD, DSc

Program:

- Problems during µp systems development
 - Hardware problems
 - Software problems
 - I/O problems
- μp systems analysis
 - Asynchronous analysis
 - Synchronous analysis
- Development tools
 - Debuggers, simulators
 - Logic state analyzers
 - In-circuit emulators

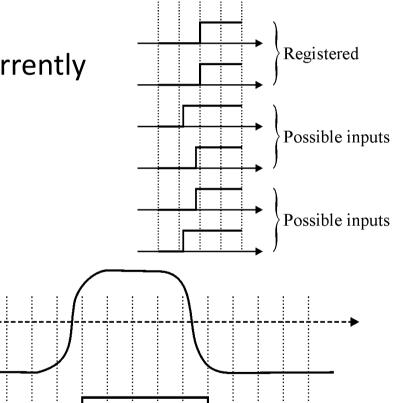
- µp systems
 - $\mu p's$ are VLSI
 - No internal signals available

 \rightarrow Observe bus signals only


- μp works according to a program
 - Results of both hardware & software
 - \rightarrow Data collected from all buses concurrently
- µp systems testing & development
 - New methods & tools necessary

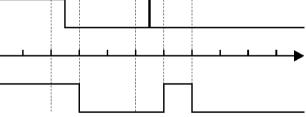
- Problems during µp systems development
 - Hardware problems
 - "cold solder", bad contacts
 - \rightarrow Variable, weak or no electric contact
 - IC damage or failure
 - Bad IC installation on PCB
 - Bad contact with IC socket
 - Bad PCB project
 - \rightarrow crosstalk, interference
 - High resistance of Vcc and Gnd paths
 - \rightarrow improper logic signals voltage levels
 - \rightarrow interference margin decreased

- Problems during µp systems development
 - Software problems
 - Hardware OK, software OK, together work bad
 - Single step operation
 - Loops jump to a random place
 - "data execution"
 - Sometimes works, sometimes not
 - *"if something worked and stopped, something must have changed*" (Alex Ragen: *"*A lexicon of C" (?))
 - I/O problems
 - Wrong transmission rate
 - Wrong data format
 - Transmission lines interference

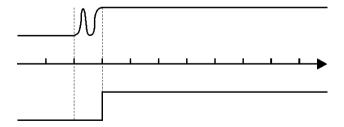

- Synchronous analysis
 - Machine cycles storage according to μp clock
 - Triggered by a given word
 - Only a part of a program is observed/debugged
 - Some words preceding trigger must also be stored
 - \rightarrow How the µp came to this program fragment?
 - Jump / next instruction / malfunction
 - Counting a trigger
 - When circuit works or not
 - Analysis starts with $n^{th}\,\, pass$

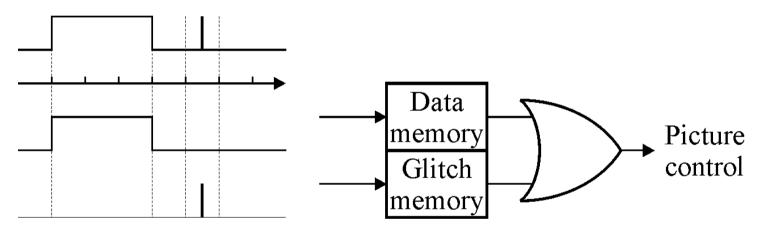
- Synchronous analysis
 - Machine cycles storage according to μp clock
 - Trigger by a "logic delay"
 - Trigger word can't be precisely determined
 - » Trigger found ("last known as good")
 - » Count *n* cycles
 - » Start to register
 - Dynamic parameters not always taken into account
 - "time set", "time hold"


- Asynchronous analysis
 - Probing at moments determined by analyser clock
 - Very high frequency
 - Probing all channels concurrently
 - Results may be ambigous
 - f≠∞

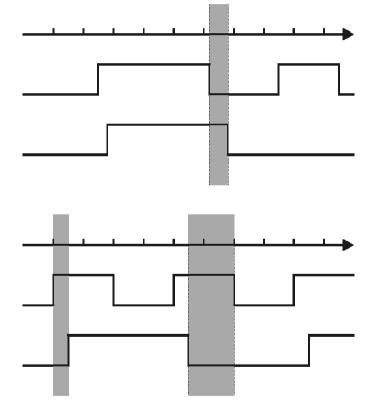


- Asynchronous analysis
 - Glitch detection
 - What is a glitch?
 - Very short pulse
 - Result of: crosstalk, interference, bad Vcc/Gnd
 - Cause of: false Int, count errors, data exchange errors...
 - How to detect a glitch?
 - Very high frequency (e.g. 200 MHz \rightarrow 5 ns glitch)
 - » (Glitch < 5 ns not very relevant for μp)
 - Latch flip-flops
 - » Was there a single glitch, or a sequence?
 - Separate signal and glitch registration


- Asynchronous analysis
 - Glitch detection
 - Probing method

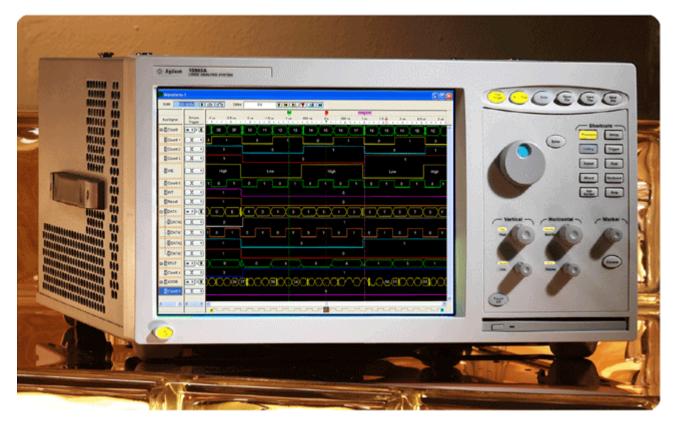

• With latch registers

 Glitch might be omitted by analyser input


- Asynchronous analysis
 - Glitch detection
 - Separate data and glitch recording

- Asynchronous analysis
 - Trigger condition ambiguity in probed signals
 - Missed trigger condition (between probes)

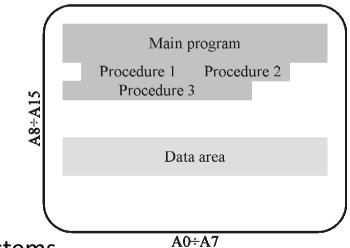
False trigger conditions


 (e.g., because of different delays)

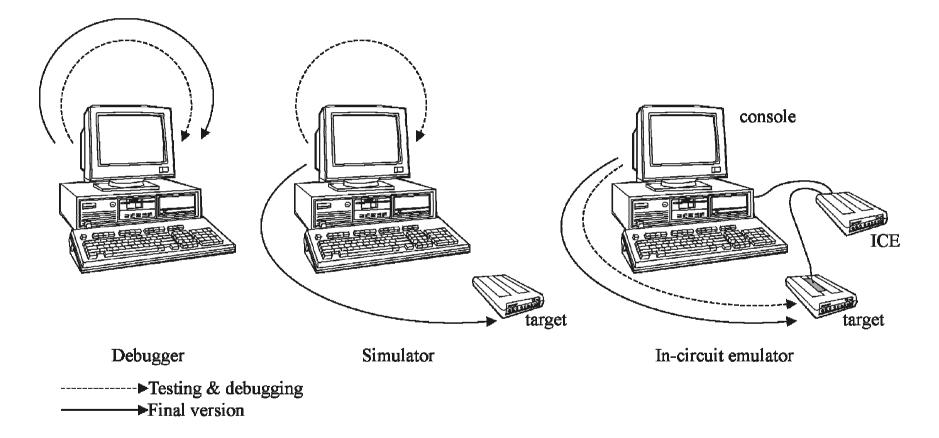
- Asynchronous analysis
 - Trigger condition ambiguity in probed signals
 - Time dependencies with regard to clk
 - Delay = circuit propagation delay, and trigger pattern comparison only after that
 - Recording with some delay after a trigger
 - Interesting consequence of a dull ("boring") event
 - Glitch-triggered recording
 - 1. Recording a single word
 - 2. No glitch \rightarrow goto 1
 - 3. Glitch found \rightarrow record longer
 - \rightarrow where/when was a glitch, and what consequences it caused

- Analysis common problems
 - Improper power, circuit assembly error
 - Wrong voltage levels (e.g. TTL vs CMOS)
 - Bad connections
 - Analyser shows something different than the μp can see
 - Time set/time hold
 - etc.

• Logic analyser – example


https://vishnuanirudh.files.wordpress.com/2012/07/logic-analyzer.gif

 Logic analyser – example


https://eleshop.eu/sla1016.html

- Logic analyser functions
 - Like oscilloscope, but:
 - Many inputs (e.g., > 100) concurrently observed
 - Digital signals
 - Pattern-triggered analysis
 - Output:
 - Series of "0" and "1"
 - Time diagrams for many signals
 - Memory access map
 - Useful for debugging µp-based systems
 - Disassembled program

- Logic analyser summary
 - Good for finding both hardware & software errors
 - "Observe-only" operation
 - Passive recording circuit behaviour
 - No active influence on circuit
 - We can find errors/mistakes, but we can't fix them
 - Other tools could be useful

• Debugger / simulator / in-circuit emulator

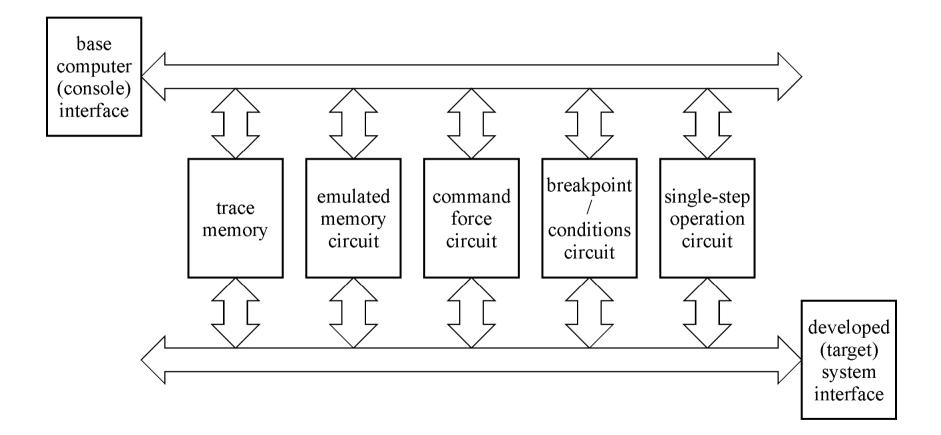
- Debugger / simulator
 - Continuous/single step program execution
 - Some simulators can perform "step back"
 - Program displayed as assembler code
 - Symbolic names possible
 - High-level language debugging possible
 - Requires compiler/linker information for the debugger
 - $-\mu p$ registers content display/modification
 - Memory content display/modification

• Turbo Debugger 2.0 example

- File Edit	View Run B	reakroints	Data	Ortions	Window	Help	READY
C5:023C B8741 C5:023F B8741 C5:023F B8730 C5:0242 BE800 C5:0245 AC C5:0246 56 C5:0246 56 C5:0247 98 C5:0248 0BC0 C5:0248 0BC0 C5:0248 7502 C5:0246 50 C5:0248 0BC0 C5:0248 0BC0 C5:0252 0B800 C5:0255	5 mov 0 cal 0 mov lod pus cbw or jne jmp 8 mov 0 cal	ax,1574 l WriteSt si,0080 h si ax,ax 024E NoArsFo h ax ax,188D l WriteSt ax,ax	ring rSure (ring	02BF)			1 C=0 V=0 S=0 P=0 P=0 A=0 i=1 d=0
CS: 025D F3AB CS: 025F 06 CS: 0260 B8333 CS: 0263 CD21 CS: 0263 CD21 CS: 0265 8CC0 CS: 0267 07 CS: 0266 0BC3 CS: 0266 7407 CS: 0266 7407 CS: 0266 CD33 CS: 0270 40 CS: 0271 7405 CS: 0273 800E6 ChkArs CS: 0278 59 CS: 0278 59 CS: 0278 F9 CS: 0278 F9 CS: 0278 F9	rep pus 5 mov int mov pop or je xor int inc je D0008 or Pop cld jcx	stosw h es		1,08		ss:0038	FFFF 49018 00014 213855 FFFFF 48FFFF FFFFF FFFFF FFFFF FFFFF FFFFF FFFFF
ds:1574 0D 0A ds:157C 6F 72 ds:1584 30 2D ds:1584 30 2D ds:1584 69 6C ds:1594 69 6C ds:1594 69 6C ds:1594 20 42 ds:15A4 70 79 ds:15A4 70 79 ds:15A4 2C 20 ds:15B4 2C 20 ds	43 6F 6D 43 655 499 20 699 69 499 20 699 749 20 699 749 20 572 699 67 68 729 20 30 729 20 320 30 338 220 33 22E 32 55 73 61 67	20 31 ore P 47 65 0-III 55 74 meral 62 79 ility 43 6F BZik 74 20 ryrig 39 32 (C) 1 20 76 , 200 0D 0A er 3. 65 3A DUsa	C 1 Ge Ut Co ht 992 992 992 992 992 992 992 992 992 99			ss 0010 ss 000E ss 000C ss 000A ss 0008 ss 0006 ss 0004 ss 0002 ss FFFE	0000

- Simulator vs debugger
 - Simulator works in a "virtual" environment
 - Commands \rightarrow procedures
 - Registers \rightarrow variables
 - Target system memories \rightarrow arrays, tables
 - Target system I/O \rightarrow records + procedures
 - Address ranges for Mem & IO must be defined
 - Real-time simulation requires:
 - Detailed knowledge of µp cycles (command cycles, machine cycles, clock cycles)
 - Significantly higher computing power (e.g., Pentium II @ 300 MHz can simulate 8051 @ 12 MHz)

• In-circuit emulator – example


– Signum Systems ICE-51

- In-circuit emulator
 - User can "see" the target circuit exactly as the μp does
 - Memory types and addresses
 - I/O interfaces
 - External environment
 - All imperfections can be found
 - Logic design errors (i.e., wrong address decoding)
 - PCB design/production error
 - Circuit assembly mistakes
 - Hardware/software integration problems
 - Pure software problems

• In-circuit emulator – example structure

- In-circuit emulator example structure
 - Single-step circuit
 - Modes
 - Continuous mode
 - Stop at the nearest command
 - » For software testing/debugging
 - Stop at the nearest machine cycle
 - » For hardware testing/debugging
 - How to implement?
 - Classical μp (e.g., Z80, 8086, etc.) machine cycle extension input (e.g., Wait, Ready etc.)
 - Single chip / μ c must have the support built-in (e.g., 8048 has \overline{SS} input, 8051 no built-in support)

- In-circuit emulator example structure
 - Breakpoint circuit
 - Simple
 - Address and/or data equal to a given value
 - Specified machine cycle occured
 - (not so) simple
 - Address and/or data matches the pattern
 - » Only selected bits are compared
 - Conjunction of simple conditions

- In-circuit emulator example structure
 - Breakpoint circuit
 - Complex (e.g., Signum Systems ICE-51)
 - Events
 - » Selected machine cycle (+adress, data pattern match)
 - » User signals
 - » Event count
 - » Event sequence
 - » Trace memory full
 - Effects
 - » Breakpoint
 - » Event counter start/stop
 - » Trace end

- In-circuit emulator example structure
 - Command force circuit
 - To make the µp perform a command/procedure that is absent from the program memory
 - ... but why do we need it?
 - To quickly fix a bug without need to recompile the program
 - To perform a diagnostic procedure
 - » E.g., store register content outside of the μp after breakpoint occured
 - » Update µp state window
 - To quickly test some actions before they are implemented in software/in system

- In-circuit emulator example structure
 - Emulated memory circuit
 - Replaces/completes system RAM/ROM
 - Contains RAM only
 - Higher priority than system memory
 - » "hides"/works instead of the system memory
 - Content can be modified easily
 - » Especially when system memory is ROM/PROM/EEPROM
 - Address ranges user-definable
 - What about I/O interfaces?

- In-circuit emulator example structure
 - Trace memory circuit
 - Stores the execution trace
 - All the machine cycles found on the μp pins
 - User signals can also be traced
 - Presented as a program flow with decoded commands, data, I/O signals, etc.
 - Like logic analysers (synchronous analysis)

- JTAG modern methods
 - Joint Test Action Group (1985)
 - IEEE Std. 1149 (1990)
 - Early applications
 - device, board & system testing & diagnosis
 - Modern applications
 - Access of IC sub-blocks
 - Debugging of embedded systems
 - Firmware programming
 - Boundary scan

- JTAG interface
 - Another built-in interface in a $\mu p/\mu c$
 - "full" JTAG
 - TDI (Test Data In)
 - TDO (Test Data Out)
 - TCK (Test Clock)
 - TMS (Test Mode Select)
 - TRST (*Test Reset*, optional)
 - "compact" JTAG cJTAG
 - TMSC (Test Serial Data)
 - TCKC (*Test Clock*)