
Microprocessor and Embedded Systems

Faculty of Automatic Control, Electronics and Computer Science, 

Informatics, Bachelor Degree



Lecture 10

Microprocessor systems

development & testing

Bartłomiej Zieliński, PhD, DSc



Development & testing

Program:

• Problems during µp systems development

– Hardware problems

– Software problems

– I/O problems

• µp systems analysis

– Asynchronous analysis

– Synchronous analysis

• Development tools

– Debuggers, simulators

– Logic state analyzers

– In-circuit emulators



Development & testing

• µp systems

– µp’s are VLSI

• No internal signals available

→Observe bus signals only

– µp works according to a program

• Results of both hardware & software

→Data collected from all buses concurrently

• µp systems testing & development

– New methods & tools necessary



Development & testing

• Problems during µp systems development

– Hardware problems

• „cold solder”, bad contacts

→ Variable, weak or no electric contact

• IC damage or failure

• Bad IC installation on PCB

• Bad contact with IC socket

• Bad PCB project

→ crosstalk, interference

• High resistance of Vcc and Gnd paths

→ improper logic signals voltage levels

→ interference margin decreased



Development & testing

• Problems during µp systems development

– Software problems

• Hardware OK, software OK, together work bad

– Single step operation

• Loops – jump to a random place

• „data execution”

• Sometimes works, sometimes not

– „if something worked and stopped, something must have
changed” (Alex Ragen: „A lexicon of C” (?))

– I/O problems

• Wrong transmission rate

• Wrong data format

• Transmission lines interference



Development & testing

• Synchronous analysis

– Machine cycles storage according to µp clock

• Triggered by a given word

– Only a part of a program is observed/debugged

– Some words preceding trigger must also be stored

→ How the µp came to this program fragment?

• Jump / next instruction / malfunction

• Counting a trigger

– When circuit works or not

– Analysis starts with nth pass



Development & testing

• Synchronous analysis

– Machine cycles storage according to µp clock

• Trigger by a „logic delay”

– Trigger word can’t be precisely determined

» Trigger found („last known as good”)

» Count n cycles

» Start to register

• Dynamic parameters not always taken into account

– „time set”, „time hold”



Development & testing

• Asynchronous analysis

– Probing at moments determined by analyser clock

• Very high frequency

• Probing all channels concurrently

– Results may be ambigous

• f≠∞

• Internal analyser delays



Development & testing

• Asynchronous analysis

– Glitch detection

• What is a glitch?

– Very short pulse

– Result of: crosstalk, interference, bad Vcc/Gnd

– Cause of: false Int, count errors, data exchange errors…

• How to detect a glitch?

– Very high frequency (e.g. 200 MHz → 5 ns glitch)

» (Glitch < 5 ns not very relevant for µp)

– Latch flip-flops

» Was there a single glitch, or a sequence?

– Separate signal and glitch registration



Development & testing

• Asynchronous analysis

– Glitch detection

• Probing method

• With latch registers

• Glitch might be omitted by 

analyser input



Development & testing

• Asynchronous analysis

– Glitch detection

• Separate data and glitch recording



Development & testing

• Asynchronous analysis

– Trigger condition ambiguity

in probed signals

• Missed trigger condition

(between probes)

• False trigger conditions

(e.g., because of different delays)



Development & testing

• Asynchronous analysis

– Trigger condition ambiguity in probed signals

• Time dependencies with regard to clk

– Delay = circuit propagation delay, and trigger pattern

comparison only after that

• Recording with some delay after a trigger

– Interesting consequence of a dull („boring”) event

• Glitch-triggered recording

1. Recording a single word

2. No glitch → goto 1

3. Glitch found → record longer

→ where/when was a glitch, and what conseqences it caused



Development & testing

• Analysis – common problems

– Improper power, circuit assembly error

– Wrong voltage levels (e.g. TTL vs CMOS)

– Bad connections

• Analyser shows something different than the µp can see

– Time set/time hold

– etc.



Development & testing

• Logic analyser – example

https://vishnuanirudh.files.wordpress.com/2012/07/logic-analyzer.gif



Development & testing

• Logic analyser –

example

https://eleshop.eu/sla1016.html



Development & testing

• Logic analyser – functions

– Like oscilloscope, but:

• Many inputs (e.g., > 100) concurrently observed

• Digital signals

• Pattern-triggered analysis

– Output:

• Series of „0” and „1”

• Time diagrams for many signals

• Memory access map

– Useful for debugging µp-based systems

• Disassembled program



Development & testing

• Logic analyser – summary

– Good for finding both hardware & software errors

– „Observe-only” operation

• Passive recording circuit behaviour

• No active influence on circuit

• We can find errors/mistakes, but we can’t fix them

– Other tools could be useful



Development & testing

• Debugger / simulator / in-circuit emulator



Development & testing

• Debugger / simulator

– Continuous/single step program execution

• Some simulators can perform „step back”

– Program displayed as assembler code

• Symbolic names possible

• High-level language debugging possible

– Requires compiler/linker information for the debugger

– µp registers content display/modification

– Memory content display/modification



Development & testing

• Turbo Debugger 2.0 example



Development & testing

• Simulator vs debugger

– Simulator works in a „virtual” environment

• Commands → procedures

• Registers → variables

• Target system memories → arrays, tables

• Target system I/O → records + procedures

• Address ranges for Mem & IO must be defined

– Real-time simulation requires:

• Detailed knowledge of µp cycles (command cycles, 

machine cycles, clock cycles)

• Significantly higher computing power (e.g., Pentium II @ 

300 MHz can simulate 8051 @ 12 MHz)



Development & testing

• In-circuit emulator – example

– Signum Systems ICE-51



Development & testing

• In-circuit emulator

– User can „see” the target circuit exactly as the µp 

does

• Memory types and addresses

• I/O interfaces

• External environment

– All imperfections can be found

• Logic design errors (i.e., wrong address decoding)

• PCB design/production error

• Circuit assembly mistakes

• Hardware/software integration problems

• Pure software problems



Development & testing

• In-circuit emulator – example structure



Development & testing

• In-circuit emulator – example structure

– Single-step circuit

• Modes

– Continuous mode

– Stop at the nearest command

» For software testing/debugging

– Stop at the nearest machine cycle

» For hardware testing/debugging

• How to implement?

– Classical µp (e.g., Z80, 8086, etc.) – machine cycle extension

input (e.g., Wait, Ready etc.)

– Single chip / µc – must have the support built-in (e.g., 8048 has

SS input, 8051 – no built-in support)



Development & testing

• In-circuit emulator – example structure

– Breakpoint circuit

• Simple

– Address and/or data equal to a given value

– Specified machine cycle occured

• (not so) simple

– Address and/or data matches the pattern

» Only selected bits are compared

– Conjunction of simple conditions



Development & testing

• In-circuit emulator – example structure

– Breakpoint circuit

• Complex (e.g., Signum Systems ICE-51)

– Events

» Selected machine cycle (+adress, data pattern match)

» User signals

» Event count

» Event sequence

» Trace memory full

– Effects

» Breakpoint

» Event counter start/stop

» Trace end



Development & testing

• In-circuit emulator – example structure

– Command force circuit

• To make the µp perform a command/procedure that is

absent from the program memory

• … but why do we need it?

– To quickly fix a bug without need to recompile the program

– To perform a diagnostic procedure

» E.g., store register content outside of the µp after

breakpoint occured

» Update µp state window

– To quickly test some actions before they are implemented in 

software/in system



Development & testing

• In-circuit emulator – example structure

– Emulated memory circuit

• Replaces/completes system RAM/ROM

• Contains RAM only

– Higher priority than system memory

» „hides”/works instead of the system memory

– Content can be modified easily

» Especially when system memory is ROM/PROM/EEPROM

– Address ranges user-definable

• What about I/O interfaces?



Development & testing

• In-circuit emulator – example structure

– Trace memory circuit

• Stores the execution trace

– All the machine cycles found on the µp pins

• User signals can also be traced

• Presented as a program flow with decoded commands, 

data, I/O signals, etc.

– Like logic analysers (synchronous analysis)



Development & testing

• JTAG – modern methods

– Joint Test Action Group (1985)

• IEEE Std. 1149 (1990)

– Early applications

• device, board & system testing & diagnosis

– Modern applications

• Access of IC sub-blocks

• Debugging of embedded systems

• Firmware programming

• Boundary scan



Development & testing

• JTAG – interface

– Another built-in interface in a µp/µc

– „full” JTAG

• TDI (Test Data In)

• TDO (Test Data Out)

• TCK (Test Clock)

• TMS (Test Mode Select)

• TRST (Test Reset, optional)

– „compact” JTAG – cJTAG

• TMSC (Test Serial Data)

• TCKC (Test Clock)


