

Rzeczpospolita Polska

Unia Europejska Europejski Fundusz Społeczny

Politechnika Śląska jako Centrum Nowoczesnego Kształcenia opartego o badania i innowacje

POWR.03.05.00-IP.08-00-PZ1/17

Projekt współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego

Microprocessor and Embedded Systems

Faculty of Automatic Control, Electronics and Computer Science, Informatics, Bachelor Degree

Lecture 9

Serial buses & interfaces

Bartłomiej Zieliński, PhD, DSc

Program:

• Serial vs parallel bus — Which is better?

- Selected solutions
 - I²C, SMBus
 - **SPI**, Microwire
 - 1-Wire

Serial bus		Parallel (classic) bus
Small numer of connections		Large numer of connections
Simple path routing on PCB, small PCB area	easy design,	Complex path routing, difficult design, large PCB area
Few or no auxilliary element Decoding on a logical level	s Not always	Many auxilliary elements (buffers, registers, decoders, gates, etc.) Decoding on a physical level
Low transmission rate (lower than µp can perform)	low; even if low,	High transmission rate (as high as the μp can perform)
Complex data exchange (if software implemented)	for many apps	Easy data exchange (1-3 commands/exchange)
Addressing space not occupi	ed	Addressing space occupied
Easy and cheap protection ag interference	gainst	Difficult and expensive protection against interference
Dynamic bit assignment for a and control	address, data	Static bit assignment for address, data and control
		On the other hand, what addressing space is for?

- Serial/paralel bus
 - static/dynamic bit assignment

Control Address Data	Control	Address	Data
----------------------	---------	---------	------

|--|

|--|

• Parallel bus example

• Parallel bus example (2)

• Serial bus example

- Examples to be discussed (1)
 - $-I^2C$
 - 2 bi-directional OC signals
 - Half-duplex, up to 3.4 Mbps (typical 100 kbps)
 - f_{min}=0 (zero!)
 - Master(s)-slave(s)
 - Unique ID for each IC
 - SMBus
 - Similar to I²C
 - Up to 100 kbps
 - f_{min}=10 kHz, limited operation time

- Examples to be discussed (2)
 - SPI
 - 4 uni-directional lines
 - Synchronous, full-duplex, up to over 10 Mbps
 - 4 modes
 - Master(s)-slave(s)
 - No device ID physical addressing
 - Microwire
 - Similar to SPI
 - Up to 650 kbps
 - One of the SPI modes

- Examples to be discussed (3)
 - -1-Wire
 - 1 (one!) common line for transmission and power
 - Half-duplex, up to 16.3 / 115.2 kbps
 - Master-slave
 - Unique ID among all 1-Wire devices

• |²C

- Inter-Integrated Circuit bus (Philips)
- 2 OC output lines:
 - SDA (Serial Data) bidirectional data line
 - SCL (*Serial Clock*) synchronisation clock
- Master
 - Takes control over the bus and transmission process
 - Sends Start and Stop sequences
- Slave
 - Allowed to transmit by a Master

- I²C devices
 - Bus controllers (PCF8584), buffers
 - Real time clock (+calendar, +RAM, +EEPROM, +watchdog, +power switch, etc.)
 - Digital "DIP" switches
 - LED or LCD controllers, drivers
 - General purpose I/O ports (+interrupt, + EEPROM, +expander, etc.)
 - Multiplexers and switches
 - EEPROM and SRAM memories
 - Temperature and voltage sensors
 - etc.

- I²C properties
 - Unlimited number of IC's
 - Σ capacity \leq 400 pF/line
 - More IC's line buffers necessary
 - If more than 1 Master \rightarrow arbitration procedure
 - Device ID address:
 - Constant part (vendor-defined)
 - Variable part (user-defined)
 - Allows to use multiple IC's of the same type

- I²C transmission rates
 - $-f_{min}=0 \rightarrow$ no consequences if transmission stopped
 - f_{max}=100 kbps (standard mode)
 - f_{max}=400 kbps (fast mode)
 - f_{max}=1000 kHz (fast mode plus)
 - f_{max}=3400 kbps (high speed mode)
 - f_{max}=5000 kbps (ultra fast mode)
 - Unidirectional bus only
- The faster rate, the less circuits support it

- I²C data transmission
 - Acknowledge
 - Sent after every byte
 - Transmiter releases SDA
 - Receiver pulls SDA low
 - SDA high \rightarrow Not Ack
 - Not Ack generated:
 - No receiver with the specified address
 - Receiver not ready for communication (busy, e.g., with realtime operation)
 - Command or data not understood
 - No more data can be received
 - Ack must be sent by the Master

- I²C data transmission
 - Frame transmission

- I²C data transmission
 - 10-bit addressing
 - 7b address part forbidden value
 - Bits "xx" + 8 bits = 10-b address
 - A1 may be generated by many Slaves
 - A2 and A3 generated by only a single Slave

- I²C construction recommendations
 - V_{cc} and GND (or at least GND) between SDA and SCL
 - to avoid crosstalk
 - Bus extender Σ capacity \leq 4000 pF/line

- Optoisolation
- Connection to RS232, Centronics (software control)
- Bus controller

- I²C PCF8584 bus controller
 - Works with Z80, 8051, 6800,68000, 8086, etc.
 - Master or slave function
 - Multi-master capability
 - Programmable interrupt vector

We can compare number of signals in parallel and serial buses

- SMBus
 - System Management Bus (Intel)
 - Limited compatibility to I²C
 - Transmission rate up to 100 kbps
 - Min f_{clk}=10 kHz (no transmission hang by SCL=0)
 - Operation time limit 25÷75 ms
 - Logic states voltages levels slightly different
 - Current analysis
 - $I^2 C \leftrightarrow$ SMBus connection for short distance only
 - Used e.g. in DRAM modules
 - SPD (Serial Presence Detect)
 - DRAM memory organisation & parameters

• SPI

- Serial Peripherial Interface (Motorola)
- Bi-directional synchronous transmission
 - MISO (Master In, Slave Out)
 - MOSI (Master Out, Slave In)
 - SCK (Serial Clock)
- Physical addressing
 - \overline{SS} (Slave Select)
- "four-wire serial bus"
- One Master/multiple slaves architecture

- SPI devices
 - Programmable frequency generators
 - SmartCard interfaces
 - Digital temperature sensors
 - Digital potentiometers
 - Watchdogs
 - EPROM (+watchdog, +power voltage control, +reset, etc.)

- ...

• SPI

- Typical transmission rate 2.1 Mbps
 - Some say it's not limited
 - Some implementations go over 10 Mbps
 - In μc's system clock-dependent
- Configurable data word length
- Configurable clock polarity & phase
- SCK
 - Output, when 1 Master
 - Input before transmission, otherwise

• SPI

- SS pulse may be needed to start slave action (e.g., A/D conversion)
- $-\overline{\text{SS}}$ inactive \rightarrow MOSI high-impedance
 - not all IC's!

• SPI – more slaves (bus connection)

- Unlimited number of slaves
- A decoder can be used if (too) many slaves
- Master output max. load must be considered

• SPI – more slaves (daisy-chain connection)

- E.g., set of inputs/outputs
- SGPIO, JTAG, I²C

• SPI – data transmission

- Data word length configurable
 - 8-b, 12-b (ADC, DAC), 16-b (touch screen controllers), ...
- LSB/MSB sequence definable
- $\ln \mu c$, interrupt upon word completion

- SPI clock
 - Configurable phase
 - Configurable polarity
 - 4 modes
- Can be set in a Master
- Slave must "guess" the mode
- Difficult when IC's work in different modes
 - Dynamic Master reconfiguration

• SPI – memory read example

- Commands: device-dependent

• Look into the IC documentation

- SPI μc applications
 - Serial memories access
 - $\mu c = Master$
 - Programming μc Flash/EEPROM
 - $\mu c = Slave$
 - Can be software-implemented
 - Interrupts
 - Can be implemented with additional signals
 - Neither forbidden, nor specified by the standard

- SPI transmission range extension
 - Typical transmission range
 - Not defined
 - Transmission rate-dependent
 - Extension
 - Using RS-422, RS-485, etc.

- Microwire
 - By National Semiconductor
 - Similar to SPI:
 - SI≈MISO, SO≈MOSI, SK≈SCK
 - SPI mode 0 compatible
 - µc always Master
 - $-\overline{\text{CS}}$ instead of $\overline{\text{SS}}$
 - Not needed if only one slave

- 1-Wire
 - By Dallas/Maxim
 - Similar to I^2C , but:
 - Lower transmission rates
 - Longer transmission range
 - Only 2 lines including power and ground
 - Large variety of available devices

- 1-Wire devices
 - 1-Wire master
 - Line driver
 - Temperature sensors
 - 1-Wire/SPI converter
 - 1-Wire/USB converter
 - 1-Wire/COM converter
 - RAM/ROM/EEPROM memories
 - RTC

—

- Synchronous transmission
 - Min rate not defined
 - Standard rate: 16.3 kbps
 - Overdrive rate: 115.2 kbps
 - Bit time: 60 μ s + 1 μ s recovery time

- 1-Wire transmission
 - Initiation
 - Reset pulse from Master (≤480µs)
 - Presence pulse from Slave (15÷60µs)

- $_{,,0}^{,\prime\prime} \ge 480 \mu s \rightarrow Slave power off$
- "1" after power off \rightarrow power on reset

- 1-Wire transmission
 - Master \rightarrow Slave

• 1-Wire – transmission

- 1-Wire addressing
 - Unique device ID
 - BO: IC group code
 - B1÷B6: unique IC ID
 - B7: CRC
 - Search for devices ID
 - Number of connected devices
 - Devices ID's
 - Binary-tree search based
 - Normal search all devices connected
 - Conditional search only "alarm-state" devices (result ready)

- 1-Wire MicroLAN
 - Simple/complex network of 1-Wire devices
 - Line topology

• Tree topology

- 1-Wire MicroLAN
 - Simple/complex network of 1-Wire devices
 - Complex topology

- DS2409 switch
 - "1-Wire 1-to-2 mux"
 - Control output

• 1-Wire – "iButton"

By Baran Ivo – Own work, public domain https://commons.wikimedia.org/w/index.php?curid=3014840