

Rzeczpospolita Polska

Unia Europejska Europejski Fundusz Społeczny

Politechnika Śląska jako Centrum Nowoczesnego Kształcenia opartego o badania i innowacje

POWR.03.05.00-IP.08-00-PZ1/17

Projekt współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego

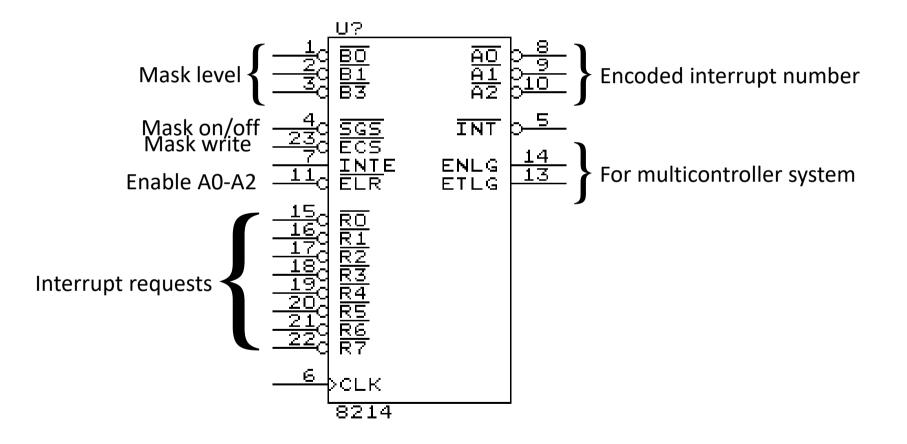
Microprocessor and Embedded Systems

Faculty of Automatic Control, Electronics and Computer Science, Informatics, Bachelor Degree

Lecture 7

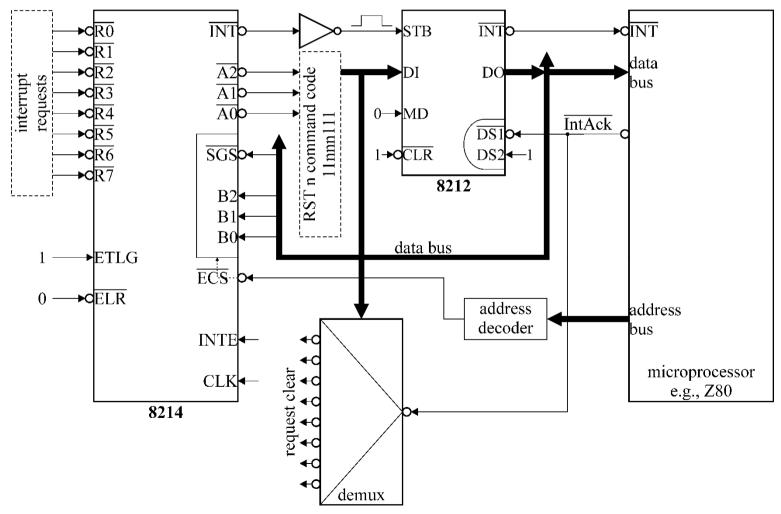
Interrupt controllers

Bartłomiej Zieliński, PhD, DSc

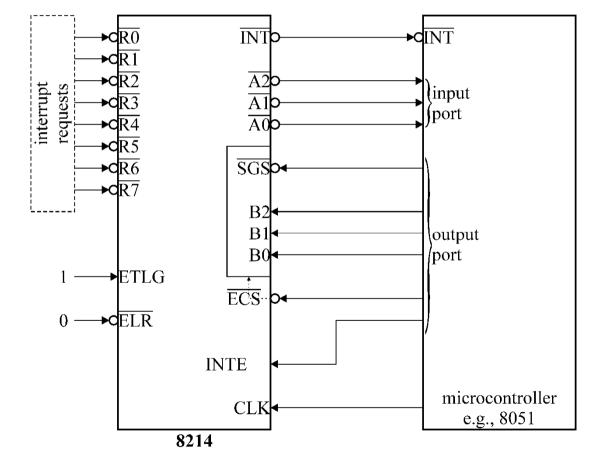

Program:

- Interrupt controller functions
- Interrupt controllers:
 - Simple: 8214
 - Complex, flexible, programmable: 8259(A)

- Interrupt controller functions
 - Interrupt source recognition
 - Priority control
 - Interrupt mask control
 - Informing the μp what to do
- Possible implementations
 - Separate IC (e.g., Intel)
 - "Distributed interrupt controller" (e.g., Zilog)
 - Lower cost (?), better scalability

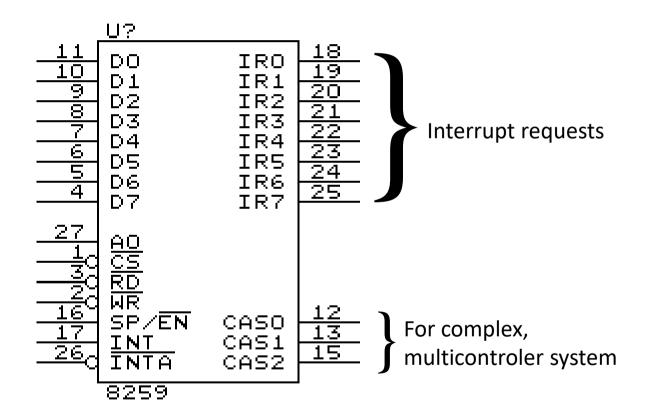

- Intel 8214
 - Simple interrupt controller
 - or maybe a complex priority encoder?
 - (almost) programmable
 - Constant (hierarchical) priority system
 - No individual masking
 - Configurable mask level

• Intel 8214 circuit pins

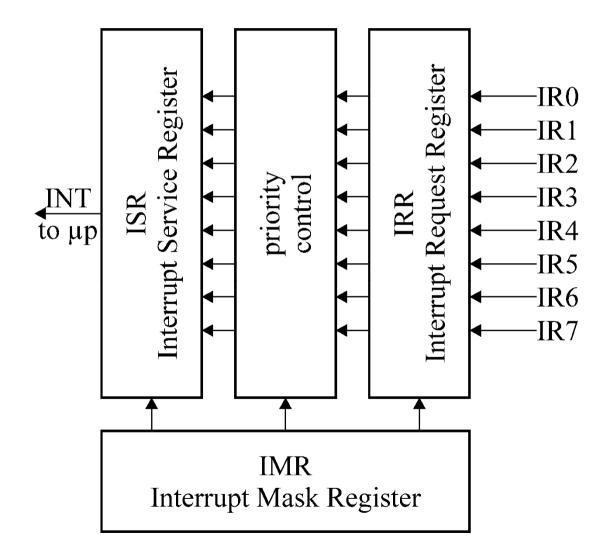


• Intel 8214 application

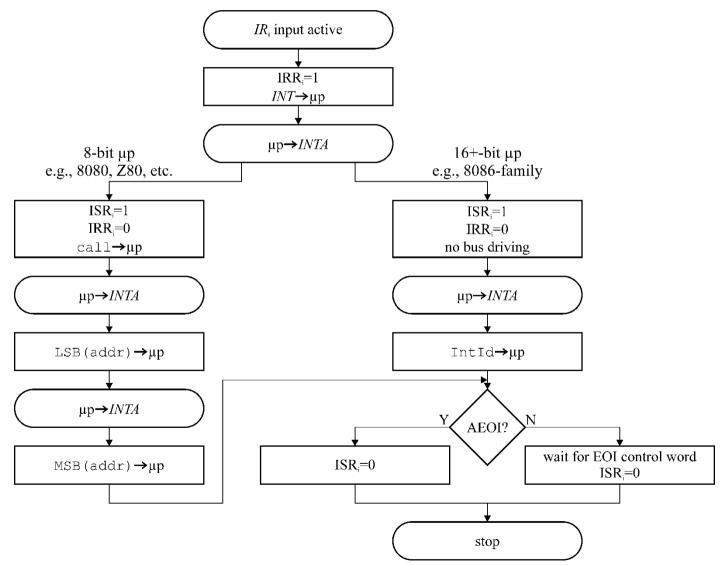
- For Z80 & similar microprocessors



- Intel 8214 application
 - For 8051 & similar microcontrollers

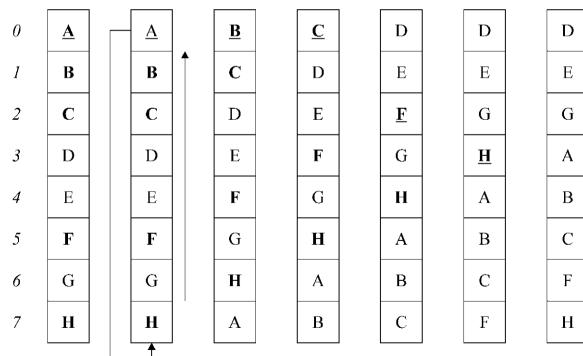

- Intel 8214 disadvantages
 - Request signal active until interrupt service
 - Otherwise µp may miss the request
 - Request signal must be software cleared
 - Otherwise µp will think it's the next request
 - No information about interrupt service procedure placement
 - Only interrupt ID is given
 - On the other hand, it's like it's done nowadays
- ... but it's a simple controller anyway...

• Intel 8259 circuit pins



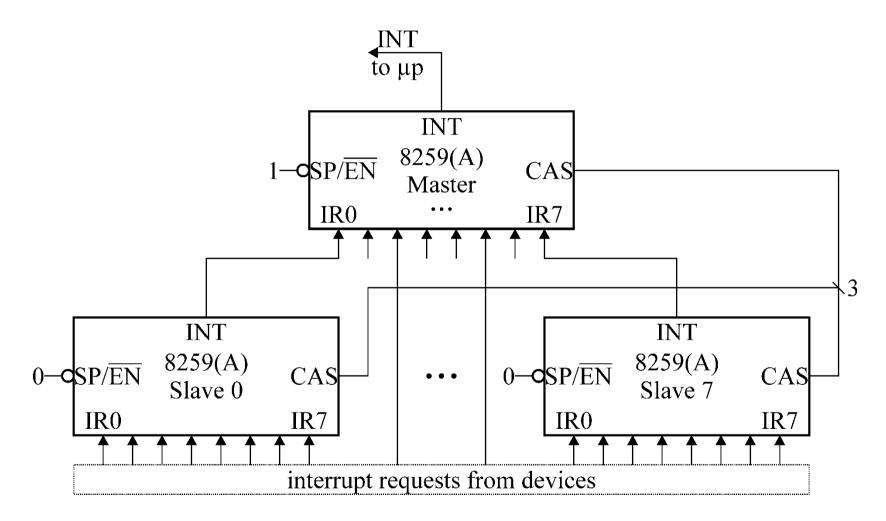
- Intel 8259A properties
 - Up to 8 fully hardware-recognised interrupts
 - Individual masking
 - Few priority assignment methods
 - Hierarchical (static)
 - Rotating priority (dynamic)
 - Special masking
 - Polling mode
 - Few End-of-Interrupt possibilities
 - Complex system in cascade (Master/Slave) configuration

• Intel 8259A structure



• Intel 8259A interrupt processing

- Intel 8259A priority modes (1)
 - Fully Nested Mode
 - Static assignment: IRO highest ... IR7 lowest priority
 - Level N being served \rightarrow levels $\geq N$ auto masked
 - Special Fully Nested Mode
 - Similar to Fully Nested Mode
 - Level N being served \rightarrow levels >N auto masked
 - Level N <u>not</u> masked
 - Useful for Master in a cascade system
 - Allows to accept interrupt from currently served Slave


- Intel 8259A priority modes (2)
 - Rotating Priority Mode
 - Dynamic assignment
 - Interrupt just served is "rewarded" with the lowest priority
 - Remaining interrupts go one level higher in the hierarchy

- Intel 8259A priority modes (3)
 - Special Masking Mode
 - Can accept interrupts of a lower priority than currently being served
 - Polled Mode
 - INT line not used
 - Interrupts status software returned by a command

- Intel 8259A complex system
 - Up to 1 Master and 8 Slave circuits
 - Up to 64 fully hardware-recognised interrupts
 - Master: a bitmap tells where slaves are connected
 - Slaves: must know the Master IR input
 - CAS bus: during IntAck, selects a Slave to complete the cycle
 - IntID sent from:
 - Selected Slave, if request went through slave
 - Master, if request went directly to the master
 - IBM PC/AT: 1 Master, 1 Slave, 15 interrupts

• Intel 8259A cascade system

- Intel 8259A programming
 - Initialisation command words
 - ICW1 general options
 - ICW2 higher part of address/interrupt ID
 - ICW3 for cascade systems
 - ICW4 additional options (8259A)
 - Operation command words
 - OCW1 mask control
 - OCW2 EOI, priority rotation
 - OCW3 register read, special mask mode

- Intel 8259A programming
 - Initialisation sequence

A0 D7 D5 D4 D3 D2 D0 D6 D1 Sngl ICW4 ICW1 LTIM ADI 0 A7 A6 A5 1 ICW2 A13 A12 A15 A14 A11 A10 A9 A8 if Sngl=1 S2/ **S**1/ S0/ ICW3 **S**3 **S**7 S5 **S6 S**4 ID2 ID1 ID0 if ICW4=1 SF ICW4 0 0 Buf M/S AEOI 0 μp NM

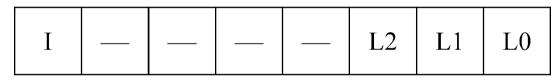
- Intel 8259A programming
 - ICW1, ICW2

	D7	D6	D5	D4	D3	D2	D1	D0
ICW1	A7	A6	A5	1	LTIM	ADI	Sngl	ICW4
ICW2	A15	A14	A13	A12	A11	A10	A9	A8

- ICW4 ICW4 present
- Sngl single/multi controller interrupt system (ICW3!)
- ADI 4 or 8 bytes between iterrupt service procedures
- LTIM IR inputs edge or level sensitive
- A15-A5 higher adress bits of interrupt service procedures (for 8-b μp)
- A15-A11 common IntID part (for 16-b μp)
 - A10-A8 = INT input number

- Intel 8259A programming
 - ICW3, ICW4

	D7	D6	D5	D4	D3	D2	D1	D0
ICW3	S 7	S 6	S 5	S4	S3	S2/ ID2	S1/ ID1	S0/ ID0
ICW4	0	0	0	SF NM	Buf	M/S	AEOI	μp


- S7-S0 (Master) slave connection bitmap
- ID3-ID0 (Slaves) master INT number
- AEOI Automatic End Of Interrupt
- M/S Master/Slave (in Buffered mode)
- Buf Buffered mode
- SFNM Special Fully Nested Mode
- μp μp type: 8-bit (8080/8085) / 16-bit (8086)

- Intel 8259A programming
 - OCW1:
 - M7-M0 mask bits
 - OCW2:

- A0 D7 D6 D5 D4 D3 D2 D1 D0 OCW1 M5 M7 M6 M4 M3 M2 M1 M0OCW2 = 0SL EOI L2 R 0 0 L1 LO OCW3 0 0 0 Р RR RIS 1
- R, SL, EOI EOI commands, priority rotation
- L2-L0 interrupt number for EOI/rotation
- OCW3:
 - RR, RIS read IRR or ISR on the nearest $\overline{\text{RD}}$
 - P poll command
 - SMM, ESMM set or reset Special Mask Mode

- Intel 8259A programming
 - EOI types
 - Non-specific EOI: reset the highest ISR active bit
 - Specific EOI: reset the ISR bit specified by L2-L0
 - When not in Fully Nested Mode
 - AEOI: non-specific EOI automatically performed
 - Priority rotation:
 - Non-specific EOI + priority rotation
 - Specific EOI + priority rotation
 - Set/clear rotation on AEOI
 - Specific rotation only

- Intel 8259A programming
 - Poll mode
 - Send OCW3 with P=1
 - On the nearest $\overline{\text{RD}}$, status is given as follows:

- L2-L0 highest priority level requesting interrupt
- I if any interrupt is active
- Buffered mode
 - SP/\overline{EN} used to control external buffer
 - Master/Slave selection software-set only

- Intel 8259A programming
 - Word/register addressing summary

A0	D4	D3	RD	WR	action
0			0	1	Read IRR or ISR
1			0	1	Read IMR
0	0	0	1	0	Write OCW2
0	0	1	1	0	Write OCW3
0	1	*	1	0	Write ICW1
1	*	*	1	0	Write ICW2, ICW3, ICW4 or OCW1