

Rzeczpospolita Polska

Unia Europejska Europejski Fundusz Społeczny

Politechnika Śląska jako Centrum Nowoczesnego Kształcenia opartego o badania i innowacje

POWR.03.05.00-IP.08-00-PZ1/17

Projekt współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego

Microprocessor and Embedded Systems

Faculty of Automatic Control, Electronics and Computer Science, Informatics, Bachelor Degree

Lecture 6

Serial input/output circuits Programmable timers/counters

Bartłomiej Zieliński, PhD, DSc

Serial IO/Timers

Program:

- Serial IO circuits
 - Intel 8251
 - Zilog Z80 SIO (brief)
- Timers/counters
 - Intel 8253
 - Zilog Z80 CTC

- Intel 8251 circuit
 - Programmable serial IO circuit
 - USART (Universal Synchronous/Asynchronous
 Receiver/Transmitter)
 - Asynchronous
 - RS-232 compatible character format
 - Modem control
 - No built-in timer for transmission rate setting
 - Synchronous
 - Programmable synchronisation word(s)

• Intel 8251 circuit pins

- Serial IO + clock
 - Separate I/O signals
 - Separate clock
 - Different Tx/Rx transmission rates
 - Signals:
 - TxD (Transmitter Data) \rightarrow

 - TxC (*Transmitter Clock*) ←
 - RxC (*Receiver Clock*) ←

- Modem control
 - Comes from RS-232 standard
 - DTE (Data Terminal Equipment)
 - eg., computer, controller, etc.
 - DCE (Data Communications Equipment)

– eg., modem, network card, etc.

- Signals
 - DTR (Data Terminal Ready) \rightarrow
 - DSR (Data Set Ready) ←

 \leftarrow

- RTS (Ready To Send) \rightarrow
- CTS (Clear To Send)

- Status
 - Hardware signals
 - RxRDY (Receiver Ready) \rightarrow
 - TxRDY (Transmitter Ready) \rightarrow
 - TxEMPTY (*Transmitter Empty*)
 - SynDet/BrkDet
 - Synchronous transmission: *Synchronisation Detected*
 - » Input or output
 - Asynchronous transmission: Break Detected
 - Software status register read

 \leftrightarrow

 \rightarrow

• Transmission model

- Asynchronous transmission
 - Character format

- Break condition & signalling

- Synchronous transmission
 - Character format

– Information format

- Programming
 - Mode word

• If Sync mode selected, after Mode word, 1-2 Sync bytes

- Programming
 - Control word

- Programming
 - Status word

- Other serial transmission IC's
 - Z80 SIO (Serial Input/Output)
 - 2 serial syn/asyn serial ports
 - Asyn: RS-232 compatible
 - Syn: IBM Bisync, SDLC, HDLC, AX.25 protocols
 - » Automatic CRC calculation, transmission and check
 - » Automatic sync character insertion and removal
 - » Bit stuffing
 - 8530/82530
 - Z80 SIO for µp others than Z80
 - 8250/16450/16550...16950
 - Single serial port for PC-class computers

- Intel 8253
 - 3 independent, 16-bit counters
 - Binary/decimal counting
 - Count from initial value to 0
 - 6 modes
 - Mode-dependent Gate input
 - gate, trigger, clear

• Intel 8253 circuit pins

- Intel 8253 modes
 - Mode 0: "counter"
 - Mode write: Out=0
 - Gate=0: disable count
 - Counted to 0: Out=1 and stop

- Intel 8253 modes
 - Mode 1: "one shot (univibrator)" (retriggerable)
 - Gate 0→1: count start, Out=0
 - Gate $0 \rightarrow 1$ during count: count restart
 - Counted to 0: Out=1

- Intel 8253 modes
 - Mode 2: "rate generator" (divide-by-N counter)
 - Initially Out=1
 - Counted to 1: Out=0 for 1 T_{clk} and continue
 - Gate=1: enable; Gate=0: disable counting

- Intel 8253 modes
 - Mode 3: "square wave generator"
 - Gate $0 \rightarrow 1$: start counting (e.g., for synchronisation)
 - Counted to 0: $Out = \overline{Out}$
 - For each N, $T_{Out} = N \cdot T_{Clk}$

- Intel 8253 modes
 - Mode 4: "software triggered strobe"
 - Gate=1: count starts after initial value is written
 - Gate=0: count stops
 - Gate $0 \rightarrow 1$: count reset

- Intel 8253 modes
 - Mode 4: "hardware triggered strobe"
 - Gate=0→1: count starts
 - Gate=0: count continues
 - Gate $0 \rightarrow 1$: count reset

• Intel 8253 – Gate operation summary

Mode	0, 1→0	0→1	1
0	Disable count		Enable count
1		Initate count Reset output	
2	Disable count Out=1	Reinitiate count	Enable count
3	Disable count Out=1	Reinitiate count	Enable count
4	Disable count		Enable count
5		Initiate count	

• Intel 8253 programming

A ₁ A ₀	00	01	10	11
Register	T0 data	T1 data	T2 data	Control

Mode/control register

- Intel 8254 programming extensions
 - "Read-back" command
 - Read counter content
 - Read counter mode
 - Store counter content in a register
 - Counters bit-map selectable
 - Status command
 - Out pin status
 - Counter can be read
 - Counter mode / code

- Zilog Z80 CTC
 - 4 independent, 8-bit counters
 - Timer/counter operation
 - Count from initial value to 0
 - Automatic hardware reload
 - Counting start can be triggered
 - Out signal (for 3 counters only)
 - Interrupt generation
 - Can work as an interrupt controller for non-Z80 family circuits (e.g., 8255, 8253.....)

• Zilog Z80 CTC circuit pins

- Zilog Z80 CTC modes
 - Counter mode
 - Clk/Trg = input (active value software selectable)
 - Counted to 0: Out pulse
 - Can generate interrupt

- Zilog Z80 CTC modes
 - Timer mode
 - Clk/Trg = optional counting start
 - Counted to 0: Out pulses, $\eta = \frac{1}{2}$, $T = T_{clk} * [16|256] * Tc$
 - Can generate interrupt

- Zilog Z80 CTC programming
 - Interrupt vector
 - Common (software definable) part
 - Timer numer (automatically generated) part
 - One word for all counters

- For each timer separately
- Time constant must be announced
- Timer read any time

• Zilog Z80 CTC programming

– Mode/control

- Zilog Z80 CTC interrupts
 - T0 highest priority, T3 lowest priority
 - Individual vectors for each counter
 - May work as an interrupt controller for non-Z80 family IC's
 - "distributed interrupt controller" concept

- Zilog Z80 CTC interrupts
 - For "external" interrupt inputs
 - Counter mode
 - Time constant = 1
 - Hardware time constant reload
 - Programmable active interrupt signal edge
 - Software masking
 - For other counters/timers
 - Anything we need

- Zilog Z80 CTC reset
 - Count operations terminate
 - All interrupts disable
 - ZC/TO and INT lines inactive
 - IEO=IEI
 - Data lines high impedance