

Rzeczpospolita Polska

Unia Europejska Europejski Fundusz Społeczny

Politechnika Śląska jako Centrum Nowoczesnego Kształcenia opartego o badania i innowacje

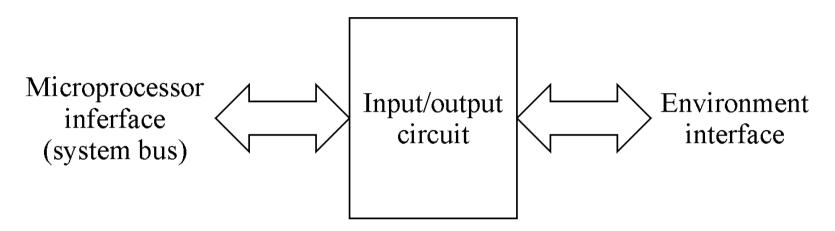
POWR.03.05.00-IP.08-00-PZ1/17

Projekt współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego

Microprocessor and Embedded Systems

Faculty of Automatic Control, Electronics and Computer Science, Informatics, Bachelor Degree

Lecture 5

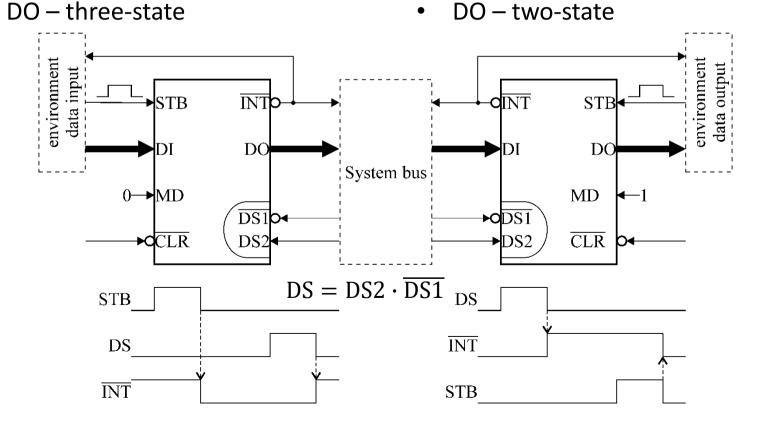

Parallel input/output circuits

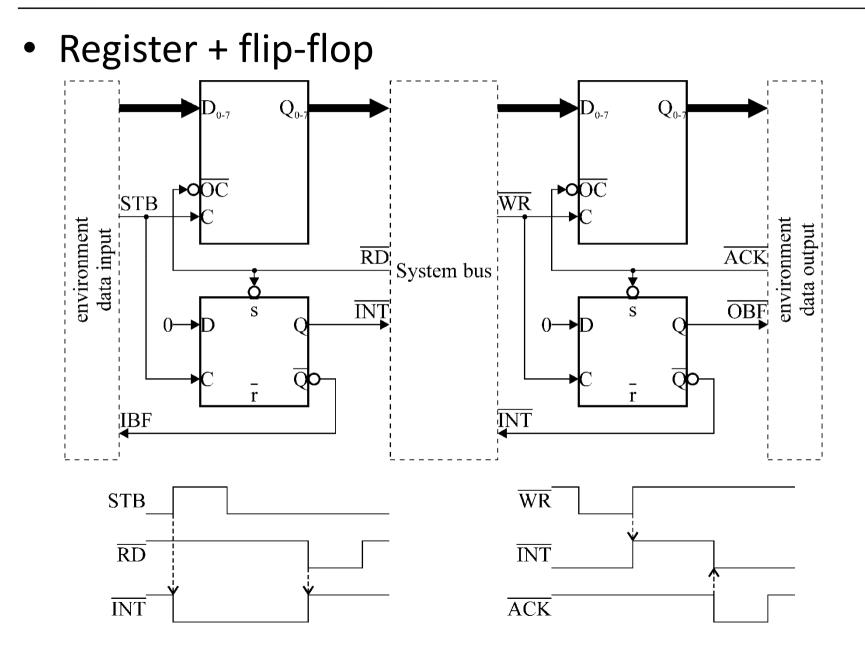
Bartłomiej Zieliński, PhD, DSc

Program:

- General IO circuit properties
- Simple paralel IO with acknowledge
 - 8212 circuit
 - Register + flip-flop
- Programmable paralel IO circuits
 - Intel 8255
 - Zilog Z80 PIO

• General concept & properties


- Microprocessor interface
 - Simple works with every μp
 - Dedicated (optimised) highly µp-dependent
- Environment interface
 - Highly function-dependent
 - Similar or compatible across various circuits


• 8212 circuit

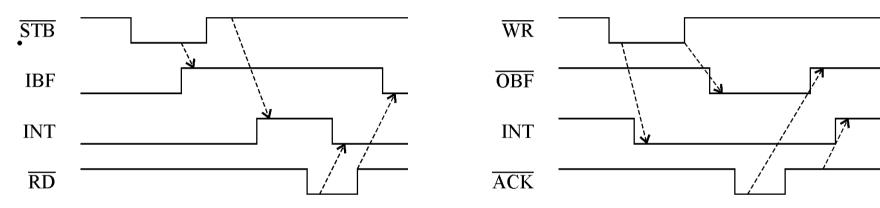
•

- 8-bit universal I/O register with status signals
- Parallel input with data ready signal

• Parallel output with data request signal

- Intel 8255 circuit
 - Programmable parallel I/O circuit
 - 3 bi-directional, 8-bit I/O ports
 - Port A bi-directional
 - Port B input or output
 - Port C input or output, control signals for A and B
 - 3 modes
 - Input or output without acknowledge (A, B, CL, CH)
 - Input or output with acknowledge (A, B)
 - Bi-directional with acknowledge (A)

• 8255 pins


34 33 32 31 30 29 28 27	D0 D1 D2 D3 D4 D5 D6 D7		PA0 PA1 PA2 PA3 PA4 PA5 PA5 PA6 PA7	4 2 40 39 38 37
1 190 0 10 00 00 00 00 00 00 00 00 00 00 00	AO A1 CS <u>RD</u> WR		PB0 PB1 PB2 PB3 PB4 PB5 PB6 PB7	18 19 20 21 22 23 23 24 25
_35	RES <u>IBFB</u> , STBB,	<u>IRQB</u> (<u>ACKB</u>) (0BFB) <u>IRQA</u> STBA <u>STBA</u> <u>IBFA</u> (0BFA)	/PC1 /PC2 /PC3 /PC4 /PC5 /PC6	14 15 16 17 13 12 11 10

8255

- 8255 port modes
 - Mode 0
 - No acknowledge
 - Transmission direction set for PA, PB, PCL, PCH
 - Output data stored in a register
 - Input data NOT stored, read directly from the pins
 - Mode 1
 - Acknowledge ("hand shake")
 - Transmission direction set for PA, PB
 - PC control signals for PA and PB
 - Output data stored in a register
 - Input data also stored in a register

• 8255 port modes

– Mode 1 (cont'd)

– Mode 2

- Similar to Mode 1
- Works only for PA
- Control signals as in Mode 1
- Input and output data stored in two separate registers

- 8255 port modes interrupts
 - Mode 0
 - No built-in interrupt mechanism
 - External circuit can be used
 - Mode 1 interrupts
 - Hardware signal (INT)
 - Software read of PC (polling)
 - Mode 2 interrupts
 - As in Mode 1
 - Common INT line for both directions
 - Requested, when INTE=1
 - Modify INTE \rightarrow set/reset PC₃ (INTE_A) or PC₀ (INTE_B)

• 8255 registers

A ₁ A ₀	00	01	10	11
Register	PA	PB	PC	Control

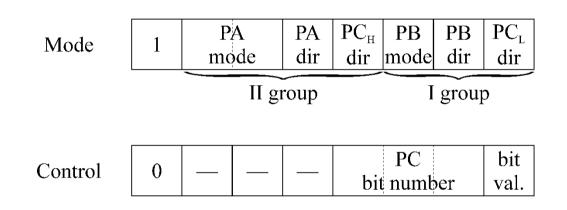
– Control register

• Mode

Bit	Function
7	1
6-5	PA mode
4	PA direction
3	PCH direction
2	PB mode
1	PB direction
0	PCL direction

PC control

- Bit Function
- 7 0

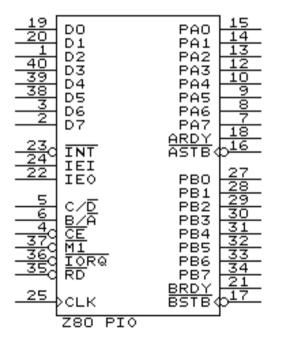

6-4 -

- 3-1 PC bit numer
- 0 PC bit value

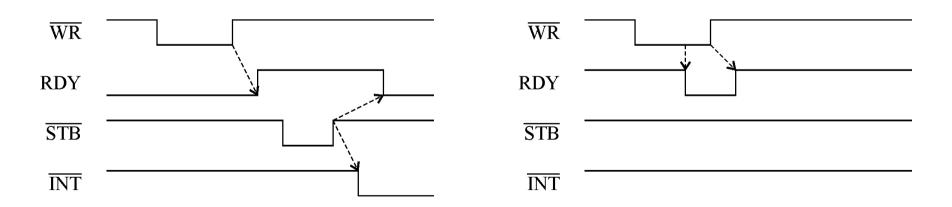
$$PC_{R_{1..3}} = R_0$$

• 8255 control register

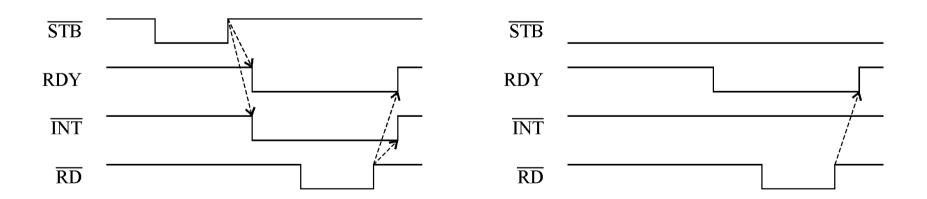
- (write only)



- Direction bits:
 - 1=1nput
 - 0=0utput


- 8255 reset
 - All ports set as Mode 0, input
 - To avoid outputs conflicts
 - Port lines in high-impedance state

- Zilog Z80 PIO circuit
 - Programmable parallel I/O circuit
 - 2 bi-directional, 8-bit I/O ports
 - Port A bi-directional
 - Port B input or output
 - 4 modes
 - Input with acknowledge (PA, PB)
 - Output with acknowledge (PA, PB)
 - Bi-directional with acknowledge (PA only)
 - PB limited to bit mode
 - Bit (PA, PB)

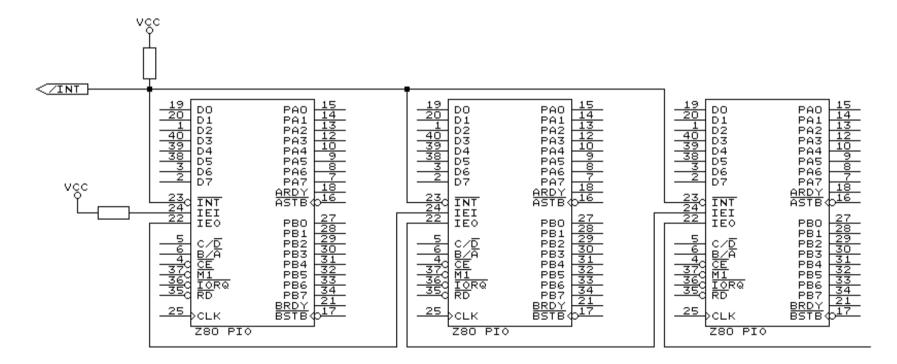

• Z80 PIO pins

- Z80 PIO port modes
 - Mode 0
 - Output with optional acknowledge
 - Works with PA and PB independently
 - Output data stored in a register
 - After data write, RDY $0 \rightarrow 1$

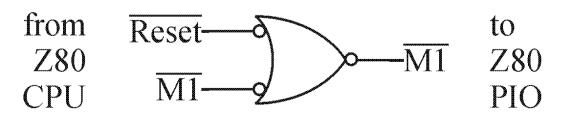
- Z80 PIO port modes
 - Mode 1
 - Input with optional acknowledge
 - Works with PA and PB independently
 - Input data may be stored in a register
 - After data read, RDY $0 \rightarrow 1$

- Z80 PIO port modes
 - Mode 2
 - Bi-directional with acknowledge
 - Works with PA only (PB only in bit mode)
 - Data stored in separate registers
 - After data read/write, RDY $0 \rightarrow 1$
 - ARDY/ASTB output, BRDY/BSTB input

- Z80 PIO port modes
 - Mode 3
 - Bit mode
 - Works with PA or PB independently
 - Each bit set as I or O
 - RDY=0
 - Automatic control function
 - Selected bits
 - Selected function (OR, AND)
 - Selected value (0, 1)
 - When fulfilled \rightarrow interrupt


- Z80 PIO programming
 - Registers (for each port separately)
 - Data input (8-b)
 - Data output (8-b)
 - Mode (2-b)
 - Mask (8-b)
 - I/O direction (8-b)
 - Interrupt vector (8-b)
 - Mask control (2-b)

- Z80 PIO programming
 - Interrupt vector ($D_0=0$, $D_{1-7}=vector$)
 - Mode (D₀₋₃=1, D₆₋₇=mode)
 - If mode=3, next byte sets I/O direction (1=out, 0-in)
 - Interrupt control ($D_{0-2}=1$, $D_3=0$, $D_7=1/0$ enable/disable)
 - If mode=3, D₆=AND/OR, D₅=1/0, D₄=mask on/off
 - If D₄ was 1, next byte is mask
 - Interrupt enable/disable (D₀₋₁=1, D₂₋₃=0, D₇=1/0 enable/disable)



- Z80 PIO interrupts
 - PA higher priority
 - Mode 0, 1, 2 requested when $\overline{\text{STB}}=0\rightarrow 1$
 - Mode 3 requested when programmed conditions are fulfilled
 - Interrupt accepted \rightarrow interrupt vector sent to μp
 - RETI command decoding

- Z80 PIO interrupts
 - IEI, IEO, INT lines
 - "daisy-chain" priority

- Z80 PIO reset
 - All ports set as Mode 1, input
 - To avoid outputs conflicts
 - PA, PB high impedance
 - ARDY=BRDY=0 (inactive)
 - Interrupts disable
 - PA and PB output registers=0
 - Mask registers=0
 - No Reset input (!)

 More information about Z80 family http://z80.info/