

Rzeczpospolita Polska

Unia Europejska Europejski Fundusz Społeczny

Politechnika Śląska jako Centrum Nowoczesnego Kształcenia opartego o badania i innowacje

POWR.03.05.00-IP.08-00-PZ1/17

Projekt współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego

Microprocessor and Embedded Systems

Faculty of Automatic Control, Electronics and Computer Science, Informatics, Bachelor Degree

Lecture 4

8051 single-chip microcomputer Part 2 Built-in peripherials

Bartłomiej Zieliński, PhD, DSc

Program:

(last week)

- 8051 structure
- Memory organisation
- Pins and machine cycles (today)
- Counter/timer circuit
- Serial port
- Interrupt controller

- Timer/counter circuit
 - T0, T1
 - 4 modes
 - 13-bit with no hardware reload
 - 16-bit with no hardware reload
 - 8-bit with hardware reload
 - T0 acts as two independent counters/timers
 - T1 can clock a serial port
 - T2
 - 16-bit
 - Hardware reload
 - Hardware capture
 - Can clock a serial port

- T0, T1 control
 - TMOD mode register
 - Mode 0-3 (2 bits)
 - Counter/timer mode (C/ \overline{T})
 - Hardware gating (1 bit)
 - TCON control register
 - Timer run (TR) bits
 - Timer flag (TF) bits
 - *IE bits for external interrupt control*
 - IT bits for external interrupt control

for each counter

• T0, T1 – modes 0, 1, 2

• T0 – mode 3

- T1
 - No interrupt
 - No software disable (TR)
 - Pulse source selectable (C/ $\overline{T_1}$)

- T2 control
 - T2CON register
 - Capture/reload function
 - Counter/timer mode (as in T0, T1)
 - TR Timer run (as in TO, T1)
 - ExEn2 external event input enable
 - Tclk transmitter clock (serial port)
 - Rclk receiver clock (serial port)
 - ExF2 external event flag
 - TF2 timer overflow flag (as in T0, T1)

• T2 structure

• T2 as a clock source for the serial port

- Serial port
 - SBUF data in/out register
 - SCON mode/control register
 - SM0, SM1 mode
 - SM2 special masking mode
 - REN receiver enable
 - TB8 transmit bit 8
 - RB8 receive bit 8
 - TI transmitter ready (interrupt flag)
 - RI receiver ready (interrupt flag)

• Serial port modes

Mode	Transmission type	Bits	Transmission rate
0	Synchronous	8	Constant: 1/12 f _{xtal}
1	Asynchronous	8	Programmable (T1 or T2 counter)
2	Asynchronous	9	Constant: 1/32 or 1/64 f _{xtal} (SMOD)
3	Asynchronous	9	Programmable (T1 or T2 counter)

– Mode 0

- RxD bidirectional data
- TxD clock output
- For e.g. shift register

- Serial port modes 1, 2, 3
 - asynchronous transmission

- Serial port modes 1, 2, 3
 - Serial port clock
 - Modes 1, 3: overflow of T1 or T2 optionally divided by 2 (SMOD=0)
 - Mode 2: ½ f_{xtal} optionally divided by 2 (SMOD=0)
 - Transmission rate = clock/16
 - T1 counter in M2 timer mode

$$R = \frac{f_{xtal}}{(2 - SMOD) * 12 * 16 * (256 - TH1)}$$

• T2 counter

$$R = \frac{f_{xtal}}{2 * 16 * (65536 - RLD)}$$

5.75÷375000 bps

• Serial port – special masking mode

- Mode 2, 3
 - SM2=1:
 - D8=0 ignored
 - D8=1 accepted

- Slaves: SM2=1
- Master: address (D8=1)
- Selected slave(s): SM2=0
- Master: data (D8=0)
- Selected slave(s): SM2=1

- Interrupt controller
 - Sources
 - External
 - INTO, INT1 IEO, IE1 flags (TCON)
 - Internal timers/counters
 - T0, T1 overflow TF0, TF1 flags (TCON)
 - T2 overflow, T2 external event TF2, ExF2 (T2CON)
 - Internal serial port
 - Transmitter or receiver ready TI, RI flags (SCON)
 - Flags set automatically, and:
 - One flag per interrupt
 - flag hardware cleared upon interrupt procedure start
 - More flags per interrupt
 - flag must be software cleared in the interrupt procedure
 - Flags can be software set
 - "manually requested interrupt"

- Interrupt controller
 - IE (interrupt enable) register
 - Each interrupt individually masked
 - Global interrupt masking
 - IP (interrupt priority) register
 - Each interrupt individually set as:
 - Interruptable (multi-level interrupt system)
 - Non-interruptable (single-level interrupt system)
 - Part of TCON register
 - IEO, IE1 external interrupt flag
 - ITO, IT1 external interrupt level/edge triggered

- Interrupt controller
 - Interrupt not accepted:
 - Not the last machine cycle of the command
 - Command operates on IE, IP or is RETI
 - higher priority interrrupt is being served
 - Interrupt acceptance:
 - Internal priority registers set
 - Flags cleared
 - PC \rightarrow stack (PSW not)
 - PC = address

- Interrupt controller
 - External interrupts
 - Edge triggered
 - Edge detected \rightarrow IEO/IE1 flags set
 - Procedure started \rightarrow flags reset
 - Flags can be software set
 - Level triggered
 - Low state until procedur starts
 - Low state should disappear before RETI
 - IEO/IE1 flags = complemented INTO/INT1 inputs
 - Flags can't be software set
 - Software set the apropriate P3 bit to manually request an external interrupt

- Low power modes
 - HMOS
 - Power off, RST/VPD=5V, 10÷15% of power
 - Power on, reset
 - CMOS software switched
 - Idle (1/8 of power)
 - CPU stops
 - Peripherials operating
 - Exit \rightarrow interrupt or reser
 - Power down (1/500 of power)
 - Only idata powered
 - $-V_{DD} >= 2 V$
 - Exit \rightarrow reset 10 ms

- System extension
 - "classical" system bus
 - External program memory
 - External data memory
 - Additional I/O circuits
 - Additional external interrupts
 - More equipped versions
 - More IO ports
 - More registers (i.e., additional DPTR)
 - More (and more sophisticated) IO interfaces
 - SPI, I²C, PWM, ADC, DAC, EEPROM.....