

Rzeczpospolita Polska

Unia Europejska Europejski Fundusz Społeczny

Politechnika Śląska jako Centrum Nowoczesnego Kształcenia opartego o badania i innowacje

POWR.03.05.00-IP.08-00-PZ1/17

Projekt współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego

Microprocessor and Embedded Systems

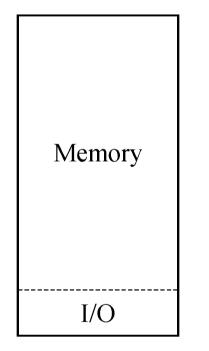
Faculty of Automatic Control, Electronics and Computer Science, Informatics, Bachelor Degree

Lecture 2

Microprocessor and environment data exchange Z-80 microprocessor

Bartłomiej Zieliński, PhD, DSc

Program:

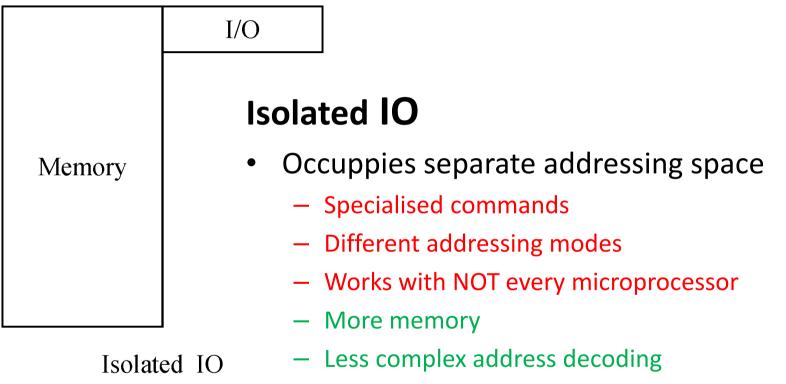

(last week)

- Elements of a microprocessor system
- Fundamental microprocessor structure
- Microprocessor operation cycles
- Basic addressing modes (today)
- Data exchange between a microprocessor and its environment
- Z-80 microprocessor

- Microprocessor system environment
 - Office
 - Keyboard, mouse, display (monitor), computer network, printer, scanner, ploter, pendrive, portable hard disk....
 - But also built-in hard disk
 - Measurement and control
 - Controlled object
 - Digital inputs, analogue inputs (A/D converters), pulse inputs, bi-state inputs, etc.
 - Digital outputs, analogue outputs (D/A converters), pulse outputs (e.g., PWM), bi-state outputs, etc.

- External devices connect via I/O interfaces
 - I/O interfaces:
 - **Simple IO**: output registers, input buffers, no status information, for "always ready" devices
 - Universal programmable IO: higher integration IC's, programmable operation modes, status information present
 - **Dedicated controllers**: for high-complexity devices that require specialized control (HDD, monitor, network...)
 - **IO coprocessors** (e.g., modern graphic adapters?)
 - I/O interface selected with address

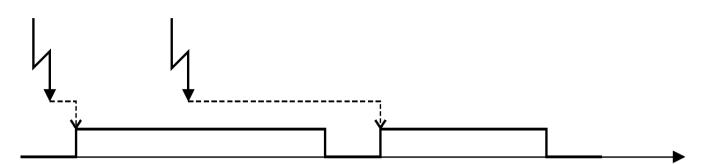
Memory addressing space

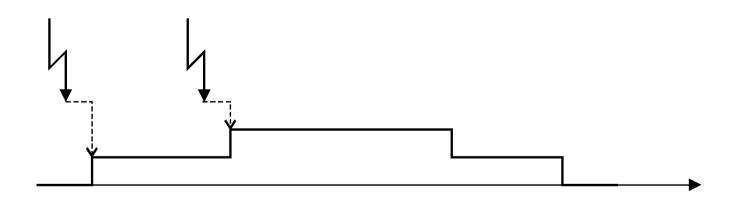


Memory-mapped IO

Memory-mapped IO

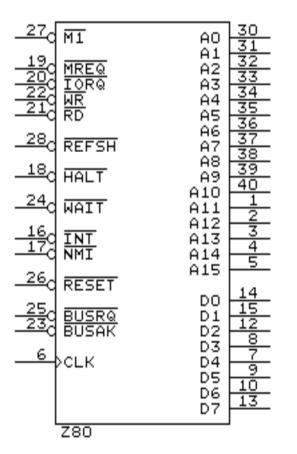
- Occuppies part of the memory addressing space
 - The same commands
 - The same addressing modes
 - Works with every microprocessor
 - Less memory
 - More complex address decoding
 - (!) less stability

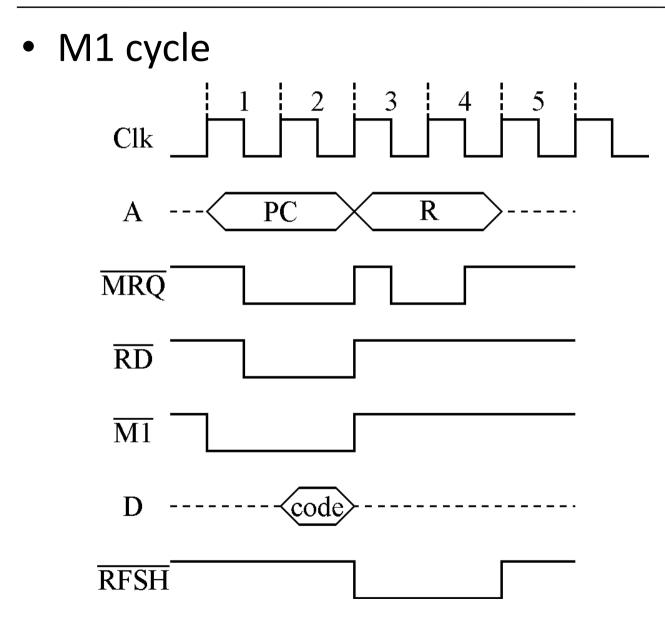

Memory IO addressing space addressing space

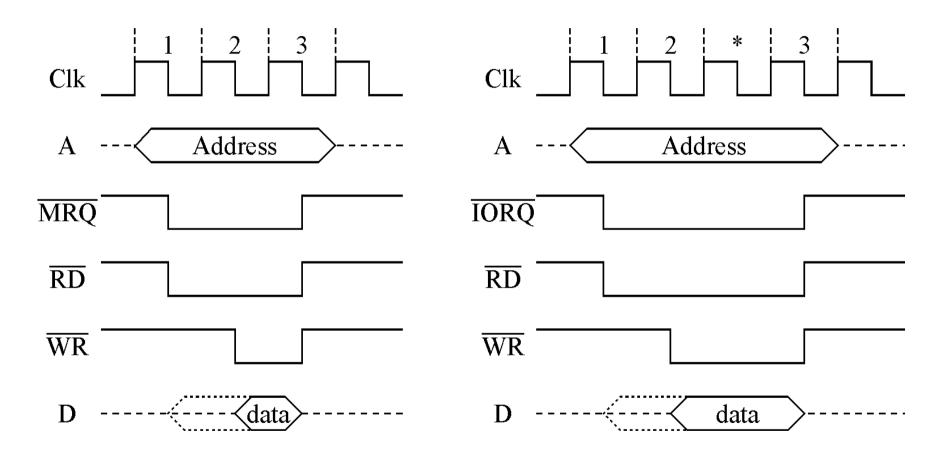


- (!) more stability

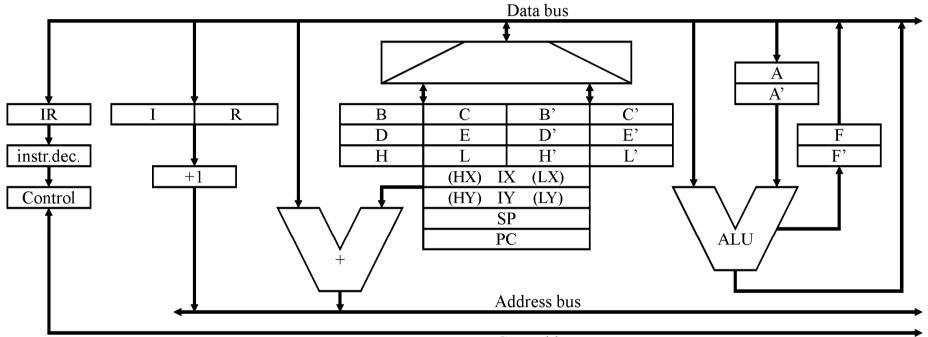
- Data exchange methods
 - Polling
 - Cyclic software read of all status registers
 - Interrupts
 - Requested by the ready devices
 - Hardware/software identification
 - Single level/multi-level
 - Hierarchical/round-robin priorities
 - Maskable/non-maskable interrupts (NMI)
 - Direct memory access (DMA)
 - Bus controlled by a DMA controller, not a microprocessor


• Single level vs multi-level interrupt system




- Basic properties
 - Single power voltage
 - 16 adress lines, 8 data lines
 - Clock 2.5 to 10 MHz (currently up to 20 MHz)
 - Single power voltage
 - 158 commands + undocumented command list
 - Two interchangeable register sets
 - 2 interrupt inputs, 3 interrupt modes
 - DRAM refresh

• Pinout



Mem/IO Rd/Wr cycles

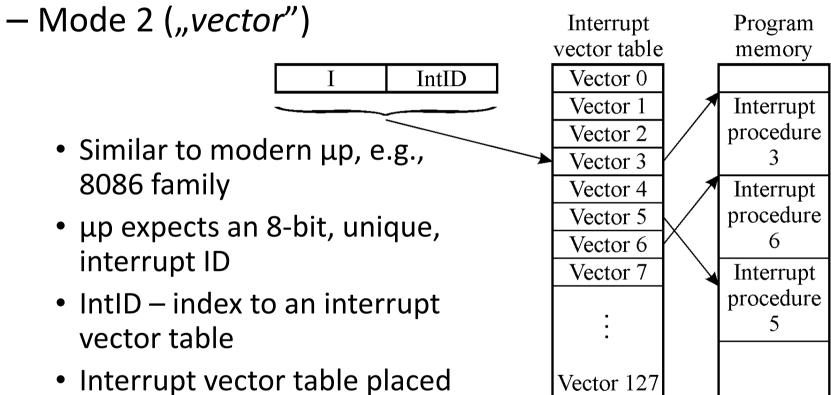
• Simplified structure

Control bus

- Registers:
 - A accummulator
 - F flags
 - BC, DE, HL joined 8-bit registers, unequally used
 - H, L traditional name from 8080 μp
 - HL jump commands, 16-b accummulator
 - BC counter, IO address
 - IX, IY index registers

- Flags:
 - C carry/borrow (also in shift and rotation)
 - -Z zero (result = 0)
 - $-S sign (A_7 bit)$
 - P/V parity/overflow
 - After logical command 1, if even numer of 1's in A
 - After arithmetical command 1, if overflow
 - H half carry/borrow from A₃
 - used for decimal correction
 - N substract (1 immediately after substraction)
 - used for decimal correction

- Commands:
 - 1B or 2B data transfer
 - Exchange
 - Arithmetical/logical 1B, arithmetical 2B
 - Shift, rotation
 - Data block (string)
 - Single bit
 - Jump, procedure call, return
 - Microprocessor control
 - i/o


- Addressing modes
 - Implied, e.g. CPL; LD SP, IY; SUB 10 (A=A-10)
 - Immediate: ADD A, n; XOR n; LD IXL, n
 - Extended immediate: LD HL, nn; JP nn
 - Register: RL r; AND r
 - Register indirect: LD A, (BC); INC (HL)
 - Extended (direct): LD A, (nn); LD (nn), HL
 - Modified page zero: RST p
 - Relative: JR Z, d
 - Indexed: AND (IX + d); LD (IY + d), N
 - Bit: SET 0, B; SET 7, (HL)

https://8bitnotes.com/2017/05/z80-addressing-modes/

- Interrupts
 - -NMI
 - non-maskable
 - Higher priority
 - Procedure starts at 0066h
 - Accepted always if $\overline{\text{BUSRQ}}$ =1
 - -INT
 - Maskable
 - Lower priority
 - When accepted, $\overline{IORQ} = \overline{M1} = 0$
 - Three different service modes

- Maskable interrupt service modes
 - Mode 0 ("historical")
 - As in 8080
 - $\mu p \; expects \; \texttt{RST} \; \; p \; command$
 - Procedures start at p
 - p=(0..7)×8=0, 8, 16, 24...56
 - 8 hardware recognised interrupts
 - Mode 1 ("single chip")
 - µp expects nothing
 - Procedure starts at 0038h

• Maskable interrupt modes

in memory at location pointed by the content of I register

- Z80 IC family
 - PIO, CTC, DMA, SIO, DART...
 - Z80 clones
- Z80 applications
 - Home μc (ZX Spectrum, Amstrad, CP/M-based)
 - Embedded systems (e.g., TNC controllers)
- Z80 as a single chip μc
 - CPU + PIO + CTC + SIO in a single IC
 - Add some memory and you get a complete μc
 - Many original IC disadvantages fixed