## Digital Circuits Design

Faculty of Automatic Control, Electronics and Computer Science, Informatics, Bachelor Degree

## Lecture 6

## Counters

Bartłomiej Zieliński, PhD, DSc

## Counters

## Program:

- Counter types
- Counter parameters
- Asynchronous counters
- Synchronous counters
- Counters of a shortened cycle length


## Counters

- Counter
- Counts and remembers the numer of input pulses given within a given time to the clock input
- Control inputs
- Reset/clear
- Load
- Direction selection
- (syn/asyn)
- Gate/enable
- Write max state
- ....


## Counters

- Counters classification (1)
- By operation rules
- Modulo s (frequency divider by s)
- Up to $s$ (restart possible after initial state is forced)
- By counting code
- Decimal (BCD)
- Binary
- Others (octal, Johnson, etc.)
- By cycle length
- Constant
- Configurable (variable)


## Counters

- Counters classification (2)
- By counting direction
- Unidirectional
- Forward (inc)
- Backward (dec)
- Bidirectional
- Direction selection input
- Separate inc/dec inputs
- By clock input influence on counter flip-flops
- Asynchronous (only $1^{\text {st }}$ flip-flop)
- Synchronous (all flip-flops)
- Syn-asyn (some flip-flops)


## Counters

- Counters classification (3)
- By carry generation inside and outside of the counter
- Serial (Serial Carry, Ripple Carry) - simpler, slower
- Parallel (Parallel Carry, Look-Ahead Carry) - more complex, faster
- Serial-parallel


## Counters

- Asynchronous counter



## Counters

- Synchronous counter, parallel carry



## Counters

- Synchronous counter, serial carry



## Counters

- Counters parameters
- Operation speed $\rightarrow f_{\text {max }}$ of clock pulses
- Content set time
- For asynchronous counters
$-F_{\max }<f_{\max }$ of $1^{\text {st }}$ flip-flop
-Set time $=\Sigma \mathrm{t}_{\mathrm{p}}$ of all flip-flops: $f_{\max }=1 /\left(n t_{p D}+t_{o}\right)$
- For synchronous counters
- Set time $=\Sigma \mathrm{t}_{\mathrm{p}}$ of carry generation circuit
- Parallel carry: $f_{\max }=1 /\left(t_{p D}+t_{p g}\right)$
- Serial carry: $f_{\max }=1 /\left(t_{p D^{+}}(n-2) t_{p g}\right)$


## Counters

- Asynchronous counter



## Counters

- Asynchronous counter



## Counters

- Asynchronous counters
- 749x family

| Counter | Type | Counter | Code |
| :--- | :--- | :--- | :--- |
| 7490 | Decimal | Mod $2 \bmod 5$ | 8421,5421 |
| 7492 | Dozenal | Mod $2 \bmod 6$ | 6421,6321 |
| 7493 | Binary | Mod $2 \bmod 8$ | 8421 |



## Counters

## - Asynchronous counters

- 7490:
- $\mathrm{Q}_{\mathrm{A}} \rightarrow \mathrm{C}_{\mathrm{B}}: 8421$ code
- $\mathrm{Q}_{\mathrm{D}} \rightarrow \mathrm{C}_{\mathrm{A}}$ : 5421 code, $\eta=1 / 2$
-7492 :
- $\mathrm{Q}_{\mathrm{A}} \rightarrow \mathrm{C}_{\mathrm{B}}: 6421$ code
- $Q_{D} \rightarrow C_{A}: 6321$ code, $\eta=1 / 2$
-7493 :
- $Q_{A} \rightarrow C_{B}: 8421$ code, $\eta=1 / 2$

- $\mathrm{Q}_{\mathrm{D}} \rightarrow \mathrm{C}_{\mathrm{A}}: 8421$ code, $\eta=1 / 2$


## Counters

- Counters of a shortened cycle
- Design a dedicated sequential circuit
- Use a binary or decimal counter
- Last cycle state detected $\rightarrow$ reset
- Asynchronous reset $\rightarrow$ detect illegal state
- Synchronous reset $\rightarrow$ detect last legal state


## Counters

- Counters of a shortened cycle
- Design a dedicated sequential circuit
- Mod 3

- $\operatorname{Mod}(2 n+1)$



## Counters

- Counters of a shortened cycle
- Detect a forbidden state and reset
- „Mod $n$ " counter $\rightarrow$ detect $n$ and immediately reset
- Forbidden state exists for a short time
- Zero state lasts for less than a clock period
- Acceptable or not, depending on application


## Counters

- Counters of a shortened cycle
- Detect a forbidden state and reset
- Multiple counters $\rightarrow$ reset can be too short
- Some flip-flops are already cleared
- Reset signal inactive
- Some flip-flops may remain not reset
$\rightarrow$ make reset signal longer
" Pulse generators (121, 123, 555, ...)
» RC + Schmitt gates
" Clock-synchronised flip-flop



## Counters

## - Synchronous counters

- Unidirectional counters - 16x family


| Circuit | Counter | Load | Clear |
| :--- | :--- | :--- | :--- |
| 74160 | Decimal | Synchronous | Asynchronous |
| 74161 | Binary | Synchronous | Asynchronous |
| 74162 | Decimal | Synchronous | Synchronous |
| 74163 | Binary | Synchronous | Synchronous |
|  | $8(14)$ | $9(15)$ | 0 |
|  |  |  |  |



## Counters

## - Synchronous counters

- Unidirectional counters - 16x family
- Ripple mode carry circuit



## Counters

- Synchronous counters
- Unidirectional counters - 16x family
- Carry look-ahead circuit



## Counters

- Synchronous counters
- Unidirectional counters - 16x family applications
- Mod $N$ counter, counter from 0 to $N-1$
- Synchronous or asynchronous clear
- Counter from A to max (9 or 15)
- Synchronous load of A
- Counter from A to B


## Counters

## - Synchronous counters

- Bidirectional counters - 19x family

| Circuit | Counter | Direction | Load | Clear |
| :--- | :--- | :--- | :--- | :--- |
| 74190 | Decimal | Direction <br> selection <br> input | Asynchronous | Asynchronous |
| 74191 | Binary | None |  |  |
| 74192 | Decimal | Separate <br> up/down <br> inputs | Asynchronous | Asynchronous | Asynchronous | 74193 | Binary |  |
| :--- | :--- | :--- |



## Counters

- Synchronous counters
- Bidirectional counters - 190, 191



## Counters

- Synchronous counters
- Bidirectional counters - 192, 193



## Counters

## - Synchronous counters

- Bidirectional counters - 192, 193



## Counters

- Synchronous counters
- Bidirectional counters - applications
- Programmable frequency divider


$$
\begin{aligned}
& f_{\text {bin }}=\frac{f_{\text {clk }}}{16-N} \\
& f_{\text {dec }}=\frac{f_{\text {clk }}}{10-N}
\end{aligned}
$$



$$
f=\frac{f_{C l k}}{N}
$$

## Counters

- Synchronous counters
- Bidirectional counters - applications
- Separate $\rightarrow$ common clock conversion



## Counters

## - Synchronous counters

- Bidirectional counters - applications
- $0,1, \ldots, 14,15,14, \ldots 1,0,1, \ldots$ etc. counter
- As above, but with $A \rightarrow B$ jump
- During count up
- During count down
- In both directions

- To count how many people there are in a room/shop
- „COVID counter"


## Counters

- CMOS frequency generators with dividers
- 4024: 7-stage counter
- 4040: 12-stage counter
- 4020: 14-stage counter
- 4521: 24-stage counter
-4060: 14-stage counter with oscillator

| Part | Pins | Outputs |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
| 4020 | 16 | $+$ |  |  | + | + | + | + | + | + |  | + | + | + | + | $+$ |  |  |  |  |  |  |  |  |  |  |
| 4024 | 14 | $+$ | + | + | + | + | + | + |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| 4040 | 16 | $+$ | + | + | + | + | + | + | + | + |  | + | $+$ | + |  |  |  |  |  |  |  |  |  |  |  |  |
| 4521 | 16 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  | + | $+$ | + | + | + | + | + |
| 4060 | 16 |  |  |  | + | + |  | + | + | + |  | + | + | + | + | + |  |  |  |  |  |  |  |  |  |  |

## Counters

- CMOS frequency generators with dividers
- 4020



## Counters

- CMOS frequency generators with dividers
-4060
- Built-in oscillator
- Falling-edge active
- Available outputs: Q4 $\div \mathrm{Q} 10, \mathrm{Q} 12 \div \mathrm{Q} 14$



## Counters

- CMOS frequency generators with dividers
-4060
- RC or crystal circuits


$$
\begin{gathered}
T=2.2 R_{X} C_{X} \\
R_{S}=(2 \div 10) \cdot R_{X}
\end{gathered}
$$

