

Rzeczpospolita Polska

Unia Europejska Europejski Fundusz Społeczny

Politechnika Śląska jako Centrum Nowoczesnego Kształcenia opartego o badania i innowacje

POWR.03.05.00-IP.08-00-PZ1/17

Projekt współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego

Digital Circuits Design

Faculty of Automatic Control, Electronics and Computer Science, Informatics, Bachelor Degree

Lecture 6

Counters

Bartłomiej Zieliński, PhD, DSc

Program:

- Counter types
- Counter parameters
- Asynchronous counters
- Synchronous counters
- Counters of a shortened cycle length

- Counter
 - Counts and remembers the numer of input pulses given within a given time to the clock input
 - Control inputs
 - Reset/clear
 - Load
 - Direction selection
 - (syn/asyn)
 - Gate/enable
 - Write max state
 -

- Counters classification (1)
 - By operation rules
 - Modulo *s* (frequency divider by s)
 - Up to *s* (restart possible after initial state is forced)
 - By counting code
 - Decimal (BCD)
 - Binary
 - Others (octal, Johnson, etc.)
 - By cycle length
 - Constant
 - Configurable (variable)

- Counters classification (2)
 - By counting direction
 - Unidirectional
 - Forward (inc)
 - Backward (dec)
 - Bidirectional
 - Direction selection input
 - Separate inc/dec inputs
 - By clock input influence on counter flip-flops
 - Asynchronous (only 1st flip-flop)
 - Synchronous (all flip-flops)
 - Syn-asyn (some flip-flops)

- Counters classification (3)
 - By carry generation inside and outside of the counter
 - Serial (Serial Carry, Ripple Carry) simpler, slower
 - Parallel (*Parallel Carry, Look-Ahead Carry*) more complex, faster
 - Serial-parallel

• Asynchronous counter

• Synchronous counter, parallel carry

• Synchronous counter, serial carry

- Counters parameters
 - Operation speed $\rightarrow f_{max}$ of clock pulses
 - Content set time
- For asynchronous counters
 - $F_{max} < f_{max}$ of 1st flip-flop

- Set time = Σt_p of all flip-flops: $f_{max} = \frac{1}{(nt_{pD}+t_o)}$

- For synchronous counters
 - Set time = Σt_p of carry generation circuit

- Parallel carry:
$$f_{max} = \frac{1}{t_{pD}+t_{pg}}$$

- Serial carry:
$$f_{max} = \frac{1}{t_{pD}+(n-2)t_{pg}}$$

• Asynchronous counter

Oþ

• Asynchronous counter

• Asynchronous counters

– 749x family

Counter	Туре	Counter	Code
7490	Decimal	Mod 2 mod 5	8421, 5421
7492	Dozenal	Mod 2 mod 6	6421, 6321
7493	Binary	Mod 2 mod 8	8421

- Asynchronous counters
 - 7490:
 - $Q_A \rightarrow C_B$: 8421 code
 - $Q_D \rightarrow C_A$: 5421 code, $\eta = \frac{1}{2}$
 - 7492:
 - $Q_A \rightarrow C_B$: 6421 code
 - $Q_D \rightarrow C_A$: 6321 code, $\eta = \frac{1}{2}$
 - 7493:
 - $Q_A \rightarrow C_B$: 8421 code, $\eta = \frac{1}{2}$
 - $Q_D \rightarrow C_A$: 8421 code, $\eta = \frac{1}{2}$

- Counters of a shortened cycle
 - Design a dedicated sequential circuit
 - Use a binary or decimal counter
 - Last cycle state detected \rightarrow reset
 - Asynchronous reset \rightarrow detect illegal state
 - Synchronous reset \rightarrow detect last legal state

- Counters of a shortened cycle
 - Design a dedicated sequential circuit
 - Mod 3

• Mod (2*n*+1)

- Counters of a shortened cycle
 - Detect a forbidden state and reset
 - "Mod n" counter \rightarrow detect n and immediately reset
 - Forbidden state exists for a short time
 - Zero state lasts for less than a clock period
 - Acceptable or not, depending on application

- Counters of a shortened cycle
 - Detect a forbidden state and reset
 - Multiple counters \rightarrow reset can be too short
 - Some flip-flops are already cleared
 - Reset signal inactive
 - Some flip-flops may remain not reset
 - → make reset signal longer
 - » Pulse generators (121, 123, 555, ...)
 - » RC + Schmitt gates
 - » Clock-synchronised flip-flop

- Synchronous counters
 - Unidirectional counters 16x family

Circuit	Counter	Load	Clear						
74160	Decimal	Synchronous	Asynchronous						
74161	Binary	Synchronous	Asynchronous						
74162	Decimal	Synchronous	Synchronous						
74163	Binary	Synchronous	Synchronous						
C <u>lk</u>	3 (14) 9 (15) 0							
RCO									

- Synchronous counters
 - Unidirectional counters 16x family
 - Ripple mode carry circuit

- Synchronous counters
 - Unidirectional counters 16x family
 - Carry look-ahead circuit

- Synchronous counters
 - Unidirectional counters 16x family applications
 - Mod *N* counter, counter from 0 to *N*-1
 - Synchronous or asynchronous clear
 - Counter from A to max (9 or 15)
 - Synchronous load of A
 - Counter from A to B

- Synchronous counters
 - Bidirectional counters 19x family

Circuit	Counter	Direction	Load	Clear			
74190	Decimal	Direction	Asynchronous	None			
74191	Binary	selection input	Asynchronous	None			
74192	Decimal	Separate	Asynchronous	Asynchronous			
74193	Binary	up/down inputs	Asynchronous	Asynchronous			

- Synchronous counters
 - Bidirectional counters 190, 191

- Synchronous counters
 - Bidirectional counters 192, 193

- Synchronous counters
 - Bidirectional counters 192, 193

- Synchronous counters
 - Bidirectional counters applications
 - Programmable frequency divider

$$f_{bin} = \frac{f_{Clk}}{16 - N}$$
$$f_{dec} = \frac{f_{Clk}}{10 - N}$$

N→0

$$f = \frac{f_{Clk}}{N}$$

- Synchronous counters
 - Bidirectional counters applications
 - Separate \rightarrow common clock conversion

- Synchronous counters
 - Bidirectional counters applications
 - 0, 1, ..., 14, 15, 14, ... 1, 0, 1, ... etc. counter
 - As above, but with $A \rightarrow B$ jump
 - During count up
 - During count down
 - In both directions

To count how many people there are in a room/shop
"COVID counter"

- CMOS frequency generators with dividers
 - 4024: 7-stage counter
 - 4040: 12-stage counter
 - 4020: 14-stage counter
 - 4521: 24-stage counter
 - 4060: 14-stage counter with oscillator

Part	Pins	Outputs																							
		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
4020	16	+			+	+	+	+	+	+	+	+	+	+	+										
4024	14	+	+	+	+	+	+	+																	
4040	16	+	+	+	+	+	+	+	+	+	+	+	+												
4521	16																		+	+	+	+	+	+	+
4060	16				+	+	÷	+	+	+	+	+	+	+	+										

CMOS frequency generators with dividers

- 4020

- CMOS frequency generators with dividers
 - 4060
 - Built-in oscillator
 - Falling-edge active
 - Available outputs: Q4÷Q10, Q12÷Q14

- CMOS frequency generators with dividers
 - 4060
 - RC or crystal circuits

$$T = 2.2R_X C_X$$
$$R_S = (2 \div 10) \cdot R_X$$