
Digital Circuits Design

Faculty of Automatic Control, Electronics and Computer Science,
Informatics, Bachelor Degree

Lecture 14.

Hardware Description Language
- simulation

Verilog

Contents

• Synthesizable constructions -
continuation

• Simulation

Procedural assignment – always
• always

– Each procedural block is executed concurrently

– Procedural block is endless loop

– Synthesis is performed with restrictions

– Enables description of combinational and sequential circuits

– always blocks cannot be nested

• Event control: @(<sensitivity_list>)
– Any change of signal from the sensitivity list results in „an

execution” of the always block

@(CLK) Q = D;

@(posedge CLK) Q = D; //0->1, x->1, 0->x

@(negedge CLK) Q = D; //1->0, x->0, 1->x

Procedural assignment – always

• Example 1
always @(posedge CLK or negedge CLR)

begin //block; { and } are preserved for concatenation

if(!CLR)

Q <= 1'b0;

else

Q <= D;

end

• Example 2
always @(a or b or sel)

if(sel)

y = a;

else

y = b;

Procedural assignment – always

• Example 1
always @(posedge CLK or negedge CLR)

begin

if(!CLR) //…………………………………………… reset

Q <= 1'b0;

else

Q <= D;

end

• Example 3
always @(posedge CLK)

if(!CLR) //…………………………………………… reset

Q <= 1'b0;

else

Q <= D;

Procedural assignment
• Blocking assignment (=)

– The expression is evaluated and then assigned to the variable
immediately, before execution of the next statement
(so „block” the execution of other statements)

• Nonblocking (<=)
– Expressions are executed concurrently

– The order does not matter

– The expression does not „block” the execution of statements in another
procedural blocks

• Do not mix blocking and nonblocking assignments

• Use blocking assignments for a combinational circuit

• Use nonblocking assignments for a sequential circuit

Procedural assignment

• Blocking (=)

always @(posedge CLK)

begin

if(CLR)

begin

Q1 = 4'b0;

Q2 = 4'b0;

end

else

begin

Q1 = IN1; //Q2 = Q1;

Q2 = Q1; //Q1 = IN1;

end

end

• The order matters!!!

• Nonblocking (<=)

always @(posedge CLK)

begin

if(CLR)

begin

Q1 <= 4'b0;

Q2 <= 4'b0;

end

else

begin

Q1 <= IN1; //Q2 <= Q1;

Q2 <= Q1; //Q1 <= IN1;

end

end

• The order does not matter!!!

Procedural assignment
• Blocking (=)

always @(posedge CLK or posedge rst)
if(rst)

Q1 = 1’b0;
else

Q1 = Q2;
always @(posedge CLK or posedge rst)

if(rst)
Q2 = 1’b1;

else
Q2 = Q1;

– Race condition!!!

• Nonblocking (<=)
always @(posedge CLK or posedge rst)

if(rst)
Q1 <= 1’b0;

else
Q1 <= Q2;

always @(posedge CLK or posedge rst)
if(rst)

Q2 <= 1’b1;
else

Q2 <= Q1;

if-else
• if (<condition>) instr_true;

[else instr_false;]

• if-else can be nested

• Use if-else for combinational logic
else is not necessary for sequential logic

• Example

if(EN) Q = A;

if(Q < MAX) Q = Q + 1;

else Q = 0;

if(CTRL == 0)

S = A + B;

else if(CTRL == 1)

S = A - B;

else if(CTRL == 2)

S = A * B;

else S = A;

Implicated „latch”

 Other examples

if(a>10)
enable=1'b1;

if(a>10)
enable=1'b1;

else
driver=1'b0

module impl_latch(a, enable);
input [1:0] a;
output reg enable;

always @(a)
if(a<1)

enable=1'b1;
else

if(a>2)
enable=1'b0;

endmodule

Spartan-3

always @(in_a or in_b or sel)
begin

case (sel)
2’b00: out_a = in_a;
2’b01: out_a = in_b;

endcase
end

case
• Enables comparison the expression with item expressions and

execute particular statement/statements
case(<expression>)

item_1: instr_1;

...

item_n: instr_n;

default: instr_def;

endcase

• Example
case(CTRL)

2'd0: S = A + B;

2'd1: S = A - B;

2'd2: S = A * B;

default: S = A;

endcase

for loop
• for(<e>,<c>,<i>) is consisted of:

– <e> initialization

– <c> condition

– <i> increment/decrement

• Example
parameter w = 8;

input [w-1:0] D;

reg [w-1:0] Q;

integer i;

always @(posedge CLK)

begin

for(i=0; i<w; i=i+1)

Q[i] <= D[i];

end

for loop
• rd84 Example

input [7:0] D;

reg [3:0] Y;

integer i, cnt;

always @(posedge clk)

begin

cnt= 0;

for(i=0; i<8; i=i+1)

if(D[i])

cnt= cnt +1;

y<= cnt;

end

Verilog

• The HDL is a description of the operation
and/or construction of the electronic circuit

• The source is called a description or model

• Designed to simulate

Module/instance – simulation

module COUNTER(Q,CLK,CLR);
input CLK,CLR;
output [2:0] Q;

//instances of the TFF module
TFF tff0(Q[0],CLK ,CLR);
TFF tff1(Q[1],Q[0],CLR);
TFF tff2(Q[2],Q[1],CLR);

endmodule

module TFF(...
...
endmodule

Instance – simulation
• Test module

• Example tests

Procedural blocks – always and initial

• Every procedural block is „executed”
concurrently

• Simulation of every block begins in so called
zero simulation time

• initial and always cannot be nested

always block in simulation

• „Execution” (simulation) of the procedural
block begins at 0 time

• Block is „executed” as endless loop

• Initialization of signals from always block
must be performed by using initial block

• Define the end of simulation because
always is endless loop - otherwise the
simulation will not end!

Initial block
• „Execution” of the procedural block begins at 0 time

• initial block is „executed” once during
simulation

• It is not synthesizable!
module BEHAV;
reg CLK;

initial
begin

CLK = 1’b0;
forever #5 CLK = ~CLK;

end

initial
$monitor(“%t: CLK: %b”,$time,CLK);

endmodule

Delays
initial
begin
b = 1'b0;
#10 a = b;
//wait 10 time units; take b and assign to a

end

initial
begin
x = 1'b0; y = 1'b1;
z = #10 x + y;
//count x + y; wait 10 time units; assign to z

end

Instances and simulation

module Test;
reg CLK,CLR;
wire [3:0] Q;

CNT C1(Q,CLK ,CLR);

//Clock generator
initial
begin

//initial value
CLK = 1’b0;
//generator
forever

#5 CLK = ~CLK;
end
...

Instances and simulation

//CLR control
initial
begin

CLR = 1’b1; //initial value t = 0 CLR = 1
#15 CLR = 1’b0; // t = t + 15 = 15, CLR = 0
#180 CLR = 1’b1; // t = t + 180 = 195, CLR = 1
#10 CLR = 1’b0;
#20 $finish; //the end

end

//monitor function
initial

$monitor(“%t: %b %b : %d”,$time,CLK,CLR,Q);

endmodule

Simulation

• Stimulation test

• $monitor

0: 0 1 : 0
5: 1 1 : 0
10: 0 1 : 0
15: 1 0 : 1
20: 0 0 : 1
25: 1 0 : 2
30: 0 0 : 2
35: 1 0 : 3
40: 0 0 : 3
45: 1 0 : 4
50: 0 0 : 4
55: 1 0 : 5

60: 0 0 : 5
65: 1 0 : 6
70: 0 0 : 6
75: 1 0 : 7
80: 0 0 : 7
85: 1 0 : 8
90: 0 0 : 8
95: 1 0 : 9
100: 0 0 : 9
105: 1 0 : 10
110: 0 0 : 10
115: 1 0 : 11

Structural procedures

module stimulus;
reg a, b;

initial
b = 1'b0;

initial begin
#10 a = 1'b0;
#15 a = 1'b1;
#5 b = 1'b1;

end

initial
#50 $finish;

endmodule

module CLKGEN;
reg clock;
parameter hper = 10;

initial
clock = 1'b0;

always
#hper clock = ~clock;

initial
#1000 $finish;

endmodule

Procedural assignment

initial
begin
b = 1'b0;
#10 a = 1'b0;
#15 a = 1'b1;
#5 b = 1'b1;

end

initial
begin
b = 1'b0;
a <= #10 1'b0;
a <= #15 1'b1;
b <= #5 1'b1;

end

Blocking (=) Nonblocking (<=)

Time Event
0 b = 0
5 b = 1
10 a = 0
15 a = 1

time Event
0 b = 0
10 a = 0
25 a = 1
30 b = 1

Directives

• Time

`timescale <ref_time_unit>/<time_precision>

`timescale 1ns / 1ps

Based on:

Robert Czerwiński „Digital Circuits Design” lecture

